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Robert Brignall (PI) is a Lecturer in Combi-
natorics at The Open University. After being an
undergraduate at the University of Cambridge,
he received his PhD in 2007 from the Univer-
sity of St Andrews. From 2007–2010, he was
a Research Fellow at the Heilbronn Institute
for Mathematical Research – a joint venture be-
tween the University of Bristol and the Govern-
ment Communications Headquarters (GCHQ).
During this appointment, the PI worked for
half of his time on his own research, and the
other half on research directed by the Heil-
bronn Institute. Although the latter research
cannot be published, and despite finishing his
PhD less than 4 years ago, he still has 9 papers
published and 2 submitted for publication.

Since starting his research career, he has been
centrally involved in a programme of research
to advance the structure theory of permutation
classes. He has ongoing international collabo-
rations with researchers in the USA and New
Zealand. Within the UK he continues to work
with combinatorialists at the University of Bris-
tol (where in 2009 he co-organised a workshop
on graph theory), and at the University of St
Andrews. His standing in the international per-
mutation patterns community is demonstrated
by his membership of the organising commit-
tees for the 2010 and 2011 Permutation Pat-
terns Conferences (in Dartmouth College and
California Polytechnic University, respectively)
and of the local committee for the planned 2012
meeting in Edinburgh, and his co-editorship of
the proceedings for the 2010 conference.

The PI has also always sought to place the
study of permutation patterns in a “bigger
picture”: primarily this involves seeking par-
allels and connections with other combinato-
rial structures (most notably graphs), but it
also means finding connections with other ar-
eas of mathematics, for example model theory
(through the study of relational structures).

The research in this project builds on the PI’s
highly-developed knowledge and intuition of

the structure of infinite antichains of permuta-
tions. Progress is expected to be made within
the study of permutation classes, but the pri-
mary aim is to use this existing knowledge to
build a clearer unified picture of the theory of
infinite antichains for combinatorial structures.

The PI anticipates that this proposal will
provide a firm foundation on which his re-
search career can continue to develop: there is a
longer-term programme of internationally im-
portant research here. This will enable the PI to
maintain existing collaborations and establish
new ones, and to create an environment at the
Open University that can attract future funding
and research students.

The Open University has a long-standing his-
tory in combinatorial research, made highly
visible through the Winter Combinatorics
Meeting which has run at the university for the
past 12 years. In 2011, the PI was involved in
the organisation of this meeting, and this is an-
ticipated to continue in the future. The com-
binatorics group, counting 13 members from
postgraduates to emeritus professors, provides
the ideal environment for this project. Individ-
uals have a diverse range of interests, includ-
ing (pertinent to this proposal) various aspects
of graph theory, and the connections between
model theory and infinite designs.Collaborators

In addition to the appointment of an RA
to this project, the proposal includes sup-
port to enable collaboration with two other re-
searchers:

Vincent Vatter is an Assistant Professor at
the University of Florida, USA. His research in-
terests relate very strongly to the PI’s – he has
29 papers in combinatorics, of which 5 are with
the PI. This ongoing collaboration makes him
a natural addition to this project, and the re-
search that has already come from this partner-
ship lends evidence to support the anticipated
success of the current project.

Vadim Lozin is an Associate Professor at
DIMAP, University of Warwick. With over 80
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publications, in recent years he has devoted
considerable attention to the study of infinite
antichains and well-quasi-order in graphs, and
also the connections with permutations. Thus
his expertise complements the PI’s, and Lozin
and the PI have together already identified
the potential for cross-fertilisation between the
study of permutations and graphs.Relevant Work

Progress in the structural theory of permu-
tation patterns in the last 7 years has led to
numerous breakthroughs. One such has been
in the study of simple permutations — in a se-
ries of three papers the PI, in collaboration with
Huczynska and Vatter [8, 9] and with Ruškuc
and Vatter [10], established three wide-ranging
results: first, a Ramsey-type result for sim-
ple permutations themselves; next, an applica-
tion of this structural result to describe a deci-
sion procedure to determine whether a finitely
based permutation class contains only finitely
many simple permutations; finally, within such
permutation classes, a general framework for a
wide variety of enumerative problems. These
three papers, together with the PI’s survey ar-
ticle [6], firmly established the important role
simple permutations play in a general structure
theory, and consequently all these papers have
already been cited numerous times by several
authors.

The PI’s unique expertise in the study of infi-
nite antichains of permutations dates back to
his first year as a PhD student, from which
came the results of [5]. In [4], the PI developed
a more general construction for “fundamen-
tal” infinite antichains of permutations than has
previously existed for any combinatorial struc-
ture, as well as describing a major advance in
showing when permutation classes do not con-
tain infinite antichains.

Other contributions to the study of permu-
tation classes include applying the developing
structure theory of permutation classes to enu-
merative problems, as exemplified by [7] and
research carried out during a total of eight
weeks spent on three research visits to the Uni-
versity of Otago in Dunedin, New Zealand [1–
3].

In the broader context of combinatorial struc-
tures (and, in particular, relational structures),
the PI together with Ruškuc and Vatter [11]

used the expertise and intuition gained in the
study of simple permutations to prove results
across a wide range of combinatorial structures.
This work demonstrates not only the PI’s grow-
ing expertise in crossing the boundaries be-
tween different structures, but also the enor-
mous potential for research in this wider con-
text.PI Referen
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Three celebrated results in combinatorics show
that in certain quasi-orders of combinatorial
structures, infinite antichains do not exist –
Higman’s Theorem on ordering by divisibil-
ity [23], Kruskal’s Tree Theorem [27] and
Robertson and Seymour’s Graph Minor Theo-
rem [33].

For many other structures and orders, how-
ever, infinite antichains do exist, and in some
cases they exist in abundance. Driven by the
widespread impact of results such as the Graph
Minor Theorem, the study of how and when in-
finite antichains occur has drawn continual at-
tention since Higman [23] effectively founded
the area in the 1950s.

In addition to “traditional” combinatorial
structures such as graphs and tournaments, a
relative newcomer to this study of infinite an-
tichains are permutations equipped with the
“containment” ordering. Despite the system-
atic study starting less than 10 years ago, the
emergence of graphical methods to analyse per-
mutations has led to fast progress, most re-
cently and significantly by the PI [4]. To date,
progress for individual combinatorial struc-
tures has only rarely been used to make con-
nections with others. Now that the study of
permutations has advanced so far, there is sig-
nificant potential for cross-fertilisation.

This proposal seeks to take a unified view to
explore the phenomenon and structure of infi-
nite antichains of general combinatorial struc-
tures by drawing on the connections between
the various objects, and study how these quasi-
orders differ from arbitrary ones.

The rest of this background is organised as
follows. First, we give an overview of well-
quasi-order for combinatorial structures, and
the motivation behind this study. Next, we
narrow our view slightly to “relational struc-
tures”, a level of generality that enables com-
parisons to be made between several promi-
nent objects. We discuss the differences be-
tween quasi-orders of combinatorial structures
and arbitrary ones, and describe some of the
theory of infinite antichains that exists in this
latter context. Finally, we introduce the permu-
tation containment ordering and survey the re-
cent antichain constructions.

Orderings on Combinatorial Stru
tures
The term combinatorial structure can poten-

tially be used to refer to a wide variety of ob-
jects: graphs, tournaments, posets, permuta-
tions, matroids, codes, designs, and so on. For
each type of structure, there are typically a va-
riety of quasi-orders: reflexive, transitive binary
relations, such as the subgraph ordering for
graphs. An antichain in such an ordering is a
set of objects for which no pair of elements are
comparable. For example, in the subgraph or-
dering this means no graph in an antichain is
the subgraph of another.

The major results of [23, 27, 33] show that
particular orders contain no infinite antichains:
they are well-quasi-ordered (wqo, for short). For
orderings which are not wqo, a lot of attention
has been devoted to instances of the following
general question:
Question 2.1. Given some finite description of
a downset in an ordering on some combinato-
rial structure, is it possible to decide whether the
downset is wqo?

A set D is a downset of a quasi-order if a ∈ D
and b ≤ a implies b ∈ D. These are promi-
nent because many natural sets of objects (e.g.
planar graphs) are actually downsets. Showing
that some downset is wqo indicates a “regular-
ity” in its structure, typically leading to enu-
merative and algorithmic results [14, 15].

Question 2.1 for the subgraph ordering is ef-
fectively answered: Ding [19] showed that a
downset in this ordering is wqo if and only if it
has finite intersection with the set of cycles and
the “split-end” graphs – see Figure 1. However,
for most structures and orderings, only partial
results exist.

Figure 1: Typical elements of the antichain of cy-
cles (left) and the “split end” antichain (right) under
both the subgraph and induced subgraph orderings.

Downsets are often described by their set of
minimal forbidden elements: elements q of the
quasi-order such that q 6∈ D, but b ∈ D for
every b < q. One common interpretation of
Question 2.1 is to consider downsets whose set
of minimal forbidden elements is finite.
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tures
Many objects can be described as relational

structures: a set of points (or vertices) with one
or more relations. For example, a graph is a
set of vertices with a binary symmetric relation
(the edges). The study of relational structures
provides links with model theory, where wqo
has also been studied intensely – see Fraïssé’s
book [21]. For our purposes, viewing different
objects as relational structures can provide the
“right” level of generality to build connections
between them.

There is a natural induced substructure order-
ing on relational structures that unifies many
important quasi-orders on specific objects. As
well as the induced subtournament order [17],
we identify two in particular: permutation con-
tainment (see later), and the induced subgraph
ordering. For the latter, downsets are called
hereditary properties, and the study of wqo re-
mains an active area of research (see e.g. [18–
20]). One aim of this proposal is to translate
the wqo results of individual structures to this
more general setting.Quasi-Orders and Fundamental Anti
hains

We may ask Question 2.1 for abstract quasi-
orders with no underlying combinatorial struc-
ture. To be wqo, these must also be well-founded
– i.e. contain no infinite descending chain. The
lack of structure in such orders enables the
creation of pathological infinite antichains, in
stark contrast to those of combinatorial struc-
tures which seem to be better behaved. This
proposal aims to identify specific features that
explain this distinction.

Some general results do exist, however. For
Question 2.1 we can restrict our view to infinite
antichains that are in some sense “elementary”.
Several authors have adopted different notions:
minimal [17, 22], fundamental, trim and max-
imal [28] and canonical [20]. We discuss only
two here, but there is a clear requirement to
consolidate and relate these concepts. Follow-
ing Gustedt [22], an infinite antichain A is min-
imal if it is minimal under the following order
on infinite antichains: A � B if for every b ∈ B
there exists a ∈ A with a ≤ b. Importantly:
Proposition 2.2 (Gustedt [22], following [30]).
Let Q be a well-founded quasi-order. For each in-
finite antichain A in Q, there exists a minimal an-
tichain B with B � A.

Thus minimal antichains satisfy this “ele-
mentary” requirement, but often it is easier
to consider the weaker notion of fundamental
antichains [28], which in practice often have
neater descriptions.
Proposition 2.3 (Cherlin and Latka [17]). For a
well-founded quasi-order Q and integer k, there ex-
ists a finite set Λk of fundamental antichains such
that any downset of Q, defined by at most k mini-
mal forbidden elements, is wqo if and only if it has
only finite intersection with every antichain in Λk.

The strength of this result lies in the evidence
it provides that the antichains of combinatorial
structures are “nice”: Λ1 is known for tourna-
ments [17] and permutations [13] – see Figure 2
for the permutation case. For graphs, Ding’s
result [19] shows that for the subgraph order-
ing Λi is known for all i (it consists of the two
antichains in Figure 1), while not even Λ1 is
known for the induced subgraph ordering.

Figure 2: Typical elements of the three fundamen-
tal permutation antichains in Λ1 (up to symme-
try). From left to right: the increasing oscillating
antichain, Widdershins and the antichain V.Permutation Classes

Writing permutations in one-line notation,
we say that σ is contained in π if there exists
a subsequence of π that is order isomorphic to
σ, i.e. the pairwise comparisons of the subse-
quence of π are the same as the corresponding
comparisons in σ. In this ordering, downsets
are called permutation classes, and if B is the
set of minimal forbidden elements of a class
C, we write C = Av(B). The study of per-
mutation classes dates back to Knuth [25], who
showed that the set of permutations which can
be sorted by passing the elements through a
stack is precisely Av(231). In addition to sort-
ing machines, connections exist with the com-
putation of Schubert varieties and aspects of
bioinformatics, such as genome rearrangement
(for example by reversals or transpositions).

Infinite antichains of permutations have been
known to exist since the 1970s [32], but the di-
rect consideration of Question 2.1 in this con-
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text started more recently [13, 28, 29]. An-
tichains have also been central to the recent
structure theory that has begun to emerge, be-
ing used directly by Vatter to find the small-
est growth rate where there exist uncountably
many permutation classes [34], and a point
above which every real number is the growth
rate of a permutation class [35].Grid Classes and Anti
hain Constru
tions

The most promising progress towards Ques-
tion 2.1 for permutation classes comes from the
study of grid classes. A grid class Grid(M)
is defined by a matrix M whose entries are
permutation classes (allowing the empty class
∅). The permutations in Grid(M) are those
that, pictorially, can be divided into cells so the
points in each cell represent a permutation of
the class in the corresponding cell of M. Note
that grid classes are themselves permutation
classes.

The connection between grid classes and wqo
was first identified by Murphy and Vatter [29],
who solved Question 2.1 for monotone grid
classes (where every non-empty cell of the ma-
trix is either Av(21) or Av(12)). In [4], the PI
proves two important advances. The first uni-
fies and generalises the results of [12] and [29]:
Theorem 2.4. For a matrix M whose cells are per-
mutation classes containing only finitely many sim-
ple permutations, Grid(M) is wqo if the graph is
acyclic, and each component has at most one non-
monotone cell.

We build the graph of a gridding matrix M

by taking a vertex for every non-empty cell, and
placing an edge between two cells that share a
row or column, with all cells in-between being
empty. Infinite antichains that “wind round”
the cells in a cycle (as in the Widdershins an-
tichain in Figure 2) have been known since [29].
In [4] the PI presents a new way to build infi-
nite antichains that includes and simplifies the
earlier constructions:
Theorem 2.5. Let M be a gridding matrix. Then
Grid(M) is not wqo if in the graph of M there ex-
ists a cycle, or a component containing two or more
non-monotone-griddable cells.

Following [24], a non-monotone-griddable cell
is a permutation class which is not the subclass
of a monotone grid class. The antichain con-
struction starts with an infinite grid pin sequence
p1, p2, . . . , extending a concept used by the PI

in [5, 8, 10]. Roughly, it builds a permutation
by sequentially placing points in a grid so that
each point relates in a unique way to its prede-
cessors. See Figure 3 for an illustration, and [4]
for the formal definition.

p8

p9

p10

Figure 3: A grid pin sequence on the 3 × 3 grid.

From these infinite sequences, all but finitely
many elements of every known fundamental
permutation can be built. First, take per-
mutations corresponding to initial segments
p1, . . . , pn for varying n, and apply an anchor-
ing construction to the first and last points: ei-
ther “inflate” them to 12 or 21, or “tie” them
together. These permutations are incompara-
ble because a shorter prefix can only embed
in a longer one as a contiguous sequence, but
the anchoring prevents this. The target an-
tichain is then obtained by performing “grid
symmetries”: permutations and reflections of
the points in rows or columns of the gridding.

Academic Impact

This research will both advance and unify sev-
eral strands of research in individual struc-
tures. Consequently it is expected to interest re-
searchers within all of these strands, and more
generally in model theory. This proposal rep-
resents the start of a long-term programme, the
impact of which is expected to continue well be-
yond the end of this project. To maximise this
impact, a survey article will be published at the
start of the project, new research will be sub-
mitted to quality mathematical journals (with
preprints published on the arXiv), and results
will be presented at seminars and major inter-
national conferences.

A structure theory for infinite antichains will
enable further progress in the structural study
of downsets of specific combinatorial objects.
From this, enumerative results typically fol-
low, particularly in asymptotics – for example
growth rates of permutation classes, or speeds
of hereditary properties [15]. As seen by the
impact of the Graph Minor Theorem, results in
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wqo theory are also important in algorithmics –
see [14] for a survey. For example, establishing
that some downset is wqo typically facilitates a
polynomial-time algorithm for the membership
problem: is an object a member of the downset?

Being newly appointed at the Open Univer-
sity, this project will assist the PI to integrate
with the existing combinatorics research group,
through running informal reading groups and
the local presentation of results.

Starting with the completion of the survey
article and continuing throughout the project,
close collaboration is expected with Vincent
Vatter (University of Florida), particularly on
Objectives 1, 3 and 4 (see below). Vatter and
the PI have a successful history of collaboration,
and the intersection of research interests makes
him an essential addition to this proposal.

Objectives 2 and 3 provide an ideal oppor-
tunity to build upon informal discussions and
collaborate with Vadim Lozin (University of
Warwick), with the close geographical proxim-
ity enabling frequent visits. Lozin’s interests
in wqo complement the PI’s own, and being
already fully aware of the potential for cross-
fertilisation he is the ideal researcher to add
breadth to and engage fully with the project.

Research Hypothesis and Objectives

With a view to Question 2.1, this project aims
to unify and advance the theory of infinite an-
tichains for combinatorial structures. The ev-
idence provided by known constructions and
results for fundamental antichains has led the
PI to develop the following hypothesis, which
underpins the proposed research:

Main Hypothesis. Fundamental antichains of
combinatorial structures have a spine: an infi-
nite structure defined by a sequence of points
p1, p2, . . . , where each pi is unique in the way
it relates to its predecessors p1, . . . , pi−1. This
spine defines all but possibly finitely many ele-
ments of the antichain by taking finite prefixes,
and then anchoring the first and last points.

The main evidence supporting this hypothe-
sis is the PI’s description of all known permu-
tation antichains; further connections are dis-
cussed later. If this or a similar hypothesis were
true, this would represent a major step towards
a general answer to Question 2.1. Never be-
fore has there been a sufficiently general con-

struction to allow such a hypothesis to be con-
sidered, and consequently the work outlined in
this proposal differs substantially from any pre-
vious programmes of research into wqo. It is
the recent major advances in permutation an-
tichain constructions that make this project so
timely. Such progress has not been possible
before, but for the first time the tools are now
available to begin this line of enquiry.

Working towards this hypothesis, we identify
four objectives that comprise this proposal:
Objective 1. Determine the relationship between
infinite antichain constructions and grid pin se-
quences.
Objective 2. Advance the theory of wqo in specific
structures, and particularly graphs, by directly con-
verting antichain constructions for permutations.
Objective 3. Through cross-fertilisation between
structures, advance the general theory of wqo for re-
lational structures.
Objective 4. Identify properties of infinite an-
tichains in orderings of combinatorial structures
that distinguish them from those in arbitrary quasi-
orders.

Programme and Methodology

The first task is for the PI and Vatter to com-
plete a survey article on infinite antichains
of combinatorial structures, setting the unified
viewpoint that the rest of the research will take.
With this completed within the first month of
the proposal, it will form a crucial part of the
induction material for the RA, as well as a solid
platform for the ensuing research.Obje
tive 1

Following the induction programme, the PI
and RA will work together closely on Objec-
tive 1 to enable the RA to start developing in-
tuition on the key concepts underlying the later
research.

Although the use of grid pin sequences has
been shown to generalise all existing antichain
constructions, it is possible that these sequences
offer too much freedom – Theorem 2.5 uses es-
sentially only one family of these, so a first
step is to consider others and establish a gen-
eral proof technique to state when infinite an-
tichains can be built. Another key concept here
are the anchoring techniques: given the spine
of a fundamental antichain, do there exist other
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anchoring methods?

In the other direction, the following impor-
tant question will feed into Objective 4.
Question 2.6. Do there exist fundamental an-
tichains of permutations which cannot be con-
structed from grid pin sequences?

If such antichains do exist, is this because
the Main Hypothesis is wrong, or are grid pin
sequences simply not the right construction?
Finding different constructions would give in-
valuable insight and open up new strands of re-
search. On the other hand, if the answer to this
question is “no” this would be an extremely far-
reaching result, giving strong evidence in sup-
port of the Main Hypothesis.Obje
tive 2

Anticipating the recruitment of an RA with a
background in graph theory, Objective 2 com-
mences soon after the start so that their exper-
tise can be brought to bear at an early stage.
Working at first with the PI and throughout in
collaboration with Lozin, the RA will gradually
assume control of this objective to choose the
lines of enquiry.

Due to the intensity of research into wqo for
graphs, the following conversion from permu-
tations is a clear starting point: For a permuta-
tion π on n points, define a graph with n ver-
tices (labelled 1, . . . , n during the construction),
with i ∼ j in the graph if and only if either i < j
and π(i) > π(j), or j < i and π(j) > π(i) –
these are precisely the permutation graphs. The
conversion preserves containment: σ contained
in π implies Gσ is an induced subgraph of Gπ,
but the reverse is not quite true (see [16]). One
simple task is to describe the conditions un-
der which this translation preserves antichains.
Typically, they do map across – for example, the
increasing oscillating antichain (Figure 2) maps
to the split end antichain (Figure 1).

Some immediate consequences arise from
this conversion of antichains. In 1992, Ding [19]
conjectured that the hereditary property con-
sisting of all permutation graphs which do not
contain paths or their complements on 5 or
more vertices is wqo, but the “Widdershins”
antichain in Figure 2 can be converted to pro-
vide a counterexample.

Objective 2 also has a more involved compo-
nent: to apply new and existing techniques for
specific structures to build upon the foothold

that this conversion provides. One aim here
will be to find Λ1 for the induced subgraph or-
dering, and Lozin’s and the RA’s expertise are
vital to add to the PI’s own experience.Obje
tive 3.

With Objective 2 advancing, the investiga-
tion team will be developing significant knowl-
edge about how infinite antichains are built in
different structures. Taking the expertise and
intuition of the PI and the RA, together with
Vatter (during his visit in Summer 2012) and
Lozin, this phase of the project will begin by
cross-fertilising between structures, including
feeding back into the work for permutations.
Building this theory for individual structures
puts us in a strong position to work towards
a more general theory of wqo for relational
structures. A primary aim here is to describe
a “generic” construction technique for funda-
mental antichains.Obje
tive 4 and the Main Hypothesis

Drawing together the results from the first
three objectives, Objective 4 seeks to answer
a deep question about the underlying proper-
ties of quasi-orders of combinatorial structures,
thus building evidence for or against the Main
Hypothesis. This objective will involve both
the RA and the PI, and Vatter during the pro-
posed visit to Florida in late Autumn 2012. We
mention here two conjectures that represent the
type of research to be considered; other similar
conjectures exist.
Conjecture 2.7 (Murphy [28]). Let A be a funda-
mental antichain of permutations. Then there exist
at most finitely many lengths n such that A has two
or more permutations of length n.

Despite being stated for permutations, we
will consider this conjecture more generally. It
is not true for arbitrary quasi-orders: in the
poset whose Hasse diagram is a rooted ternary
tree, there exists a fundamental antichain that
has two elements at every level except the low-
est.

The second conjecture, first made in 1972, is
both relevant to Objective 4 and strongly re-
lated to the Main Hypothesis, and again can be
applied more generally. For graphs G, H whose
vertices are coloured with a palette of n colours,
we write G ≤n H if G is embeddable as a
vertex-colour-preserving induced subgraph of
H. A (monochromatic) hereditary property of
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graphs G is n-wqo if the set consisting of all
n-colourings of graphs from G is wqo when
viewed as a downset in the ≤n-ordering.
Conjecture 2.8 (Pouzet [31]; see also [21, 26]).
Let G be a hereditary property of graphs. Then G is
2-wqo iff G is n-wqo for all n ≥ 2.

From the spine of a monochromatic funda-
mental antichain, there is an anchoring tech-
nique to build a 2-coloured antichain: assign a
second colour to the first and last points of each
prefix. If our Main Hypothesis is true, this con-
jecture is essentially reduced to showing that
having more than two colours does not enable
any further anchoring methods.Other Referen
es
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