
Unbounded clique-width in
hereditary graph classes

Robert Brignall

Based on joint work with Dan Cocks

Queen Mary, University of London, 9th February 2024



Grid theorems

Grid minor theorem (Robertson & Seymour, 1986)

A minor-closed class of graphs has bounded tree-width if and only if it
excludes a planar graph.

Graph minor: delete vertices or edges, and contract edges.
Tree-width: measures how much a graph is like a tree.

Grid theorem for vertex minors (Geelen, Kwon, Mccarty, Wollan, 2023)

A vertex-minor-closed class of graphs has bounded rank-width if and only if
it excludes a circle graph.

Vertex-minor: delete vertices and take ‘local complements’.
Rank-width: a graph measure involving ranks of matrices in certain
decompositions of a graph.



Grid theorems

Grid minor theorem (Robertson & Seymour, 1986)

A minor-closed class of graphs has bounded tree-width if and only if it
excludes a planar graph.

Graph minor: delete vertices or edges, and contract edges.
Tree-width: measures how much a graph is like a tree.

Grid theorem for vertex minors (Geelen, Kwon, Mccarty, Wollan, 2023)

A vertex-minor-closed class of graphs has bounded rank-width if and only if
it excludes a circle graph.

Vertex-minor: delete vertices and take ‘local complements’.
Rank-width: a graph measure involving ranks of matrices in certain
decompositions of a graph.



Grid theorems – alternative statements

Grid minor theorem (Robertson & Seymour, 1986)

Graphs of large tree-width contain a large grid as a minor.

Grid theorem for vertex minors (Geelen, Kwon, Mccarty, Wollan, 2023)

Graphs of large rank-width contain a large comparability grid as a
vertex-minor.



Metatheorems

Theorem (Courcelle, 1990)

Any problem expressible in MSO2 logic can be solved in linear time on every
class of graphs with bounded tree-width.

MSO2 logic covers problems like existence of perfect matchings, or
Hamiltonian cycles.

Theorem (Courcelle, Makowsky, Rotics, 2000)

Any problem expressible in MSO1 logic can be solved in linear time on every
class of graphs with bounded rank-width.

MSO1 logic: Weaker than MSO2, but includes finding a maximum
independent set, and deciding k-colourability.



Metatheorems

Theorem (Courcelle, 1990)

Any problem expressible in MSO2 logic can be solved in linear time on every
class of graphs with bounded tree-width.

MSO2 logic covers problems like existence of perfect matchings, or
Hamiltonian cycles.

Theorem (Courcelle, Makowsky, Rotics, 2000)

Any problem expressible in MSO1 logic can be solved in linear time on every
class of graphs with bounded rank-width.

MSO1 logic: Weaker than MSO2, but includes finding a maximum
independent set, and deciding k-colourability.



In simple terms

If a collection of graphs has. . .

. . . some planar graph as a forbidden minor, lots of graph problems are easy to
solve.

. . . some circle graph as a forbidden vertex-minor, not-so-many-lots of graph
problems are easy to solve.

Why use anything other than treewidth?

tw(Kn) = n − 1.

Classes with bounded tree-width can’t contain dense graphs.



In simple terms

If a collection of graphs has. . .

. . . some planar graph as a forbidden minor, lots of graph problems are easy to
solve.

. . . some circle graph as a forbidden vertex-minor, not-so-many-lots of graph
problems are easy to solve.

Why use anything other than treewidth?

tw(Kn) = n − 1.

Classes with bounded tree-width can’t contain dense graphs.



In simple terms

If a collection of graphs has. . .

. . . some planar graph as a forbidden minor, lots of graph problems are easy to
solve.

. . . some circle graph as a forbidden vertex-minor, not-so-many-lots of graph
problems are easy to solve.

Why use anything other than treewidth?

tw(Kn) = n − 1.

Classes with bounded tree-width can’t contain dense graphs.



Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?



Induced subgraphs

• Graph G = (V , E), undirected, simple (no loops, or multiple edges).
• Induced subgraph: H ⩽ind G if we can delete vertices (and incident

edges) from G to form a graph isomorphic to H.

Example (Graphs and induced subgraphs)



Induced subgraphs

• Graph G = (V , E), undirected, simple (no loops, or multiple edges).
• Induced subgraph: H ⩽ind G if we can delete vertices (and incident

edges) from G to form a graph isomorphic to H.

Example (Graphs and induced subgraphs)

⩽ind



Hereditary classes

Set C of graphs is hereditary if

G ∈ C and H ⩽ind G implies H ∈ C. ‘class’

‘Closed under induced subgraphs’.

Examples

Forests Bipartite graphs Planar graphs

Circle graphs Permutation graphs



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

Target:



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

1 Target:

Create vertex with label 1



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

1 2 Target:

Create vertex with label 2



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

1 2 Target:

Join labels 1 and 2



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

3

1

2

2 Target:

Create vertices with labels 2 and 3 (or use disjoint union)



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

13

1

2

2 Target:

Join labels 2 and 3, and relabel 3 → 1



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

3

13

1

2

2

2 Target:

Create vertices with labels 2 and 3 (or use disjoint union)



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

13

13

1

2

2

2 Target:

Join labels 2 and 3, and relabel 3 → 1



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

3

13

13

1

2

2

2

2 Target:

Create vertices with labels 2 and 3 (or use disjoint union)



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

Example

13

13

13

1

2

2

2

2 Target:

Join labels 2 and 3, and relabel 3 → 1



Build-a-graph

You have 4 operations to build a graph:
1. Create a new vertex with a label i.
2. Disjoint union of two previously-constructed graphs.
3. Join all vertices labelled i to all labelled j (i ̸= j).
4. Relabel every vertex labelled i with j.

• Clique-width, cw(G) = size of smallest label set needed to build G.
• If H ⩽ind G, then cw(H) ⩽ cw(G).
• Clique-width of a class C

cw(C) = max
G∈C

cw(G)

if this exists.



What has big clique width?

For fixed k: cw(k × n grid) = O(k)

cw(n × n grid) = n + 1 (Golumbic and Rotics, 1999)

Intuition: Unbounded clique width needs two dimensions.



What has big clique width?

1 5
2 6
3 7
4 8

For fixed k: cw(k × n grid) = O(k)

cw(n × n grid) = n + 1 (Golumbic and Rotics, 1999)

Intuition: Unbounded clique width needs two dimensions.



What has big clique width?

1 5
2 6
3 7
4 8

For fixed k: cw(k × n grid) = O(k)

cw(n × n grid) = n + 1 (Golumbic and Rotics, 1999)

Intuition: Unbounded clique width needs two dimensions.



What has big clique width?

For fixed k: cw(k × n grid) = O(k)
cw(n × n grid) = n + 1 (Golumbic and Rotics, 1999)

Intuition: Unbounded clique width needs two dimensions.



Tree-width, rank-width, clique-width

Theorem (Corneil and Rotics, 2005)

For any graph G,
cw(G) ⩽ 3 · 2tw(G).

Note: cw(Kn) = 2, but tw(Kn) = n − 1.

Theorem (Oum and Seymour, 2006)

For any graph G,
rw(G) ⩽ cw(G) ⩽ 2rw(G)+1 − 1.

Thus:
• Clique-width unbounded implies tree-width unbounded (converse false)
• Rank-width unbounded iff clique-width unbounded



Usefulness of clique-width

Since rank-width and clique-width are related:

Theorem (Courcelle, Makowsky, Rotics, 2000)

Any problem expressible in MSO1 logic can be solved in linear time on every
class of graphs with bounded rank-width.clique

(In fact, rank-width was only introduced in 2006, so this is more like the
original result.)



Usefulness of clique-width

Since rank-width and clique-width are related:

Theorem (Courcelle, Makowsky, Rotics, 2000)

Any problem expressible in MSO1 logic can be solved in linear time on every
class of graphs with bounded rank-width.clique

(In fact, rank-width was only introduced in 2006, so this is more like the
original result.)



Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Just use the vertex-minor grid theorem?

Hereditary classes are a richer (and arguably more natural) family:
every vertex-minor-closed class is hereditary.

The ‘circle graphs’ in the vertex-minor grid theorem contain lots of
interesting hereditary classes. Some have bounded clique-width, others don’t.



Clique-width: history to 2011

1993 Courcelle, Engelfriet & Rozenberg: (sort of) introduce clique-width.

1999 Makowsky & Rotics: split graphs have unbounded clique-width.

2000 Courcelle, Makowsky & Rotics: MSO1 metatheorem.

Golumbic & Rotics: permutation graphs have unbounded clique-width.

2006 Oum & Seymour introduce rank-width as an approximation for
clique-width that can be computed efficiently.

2011 Lozin shows that bipartite permutation graphs and unit interval graphs
are minimal classes with unbounded clique-width.



Minimal hereditary classes of unbounded clique-width

Class C is minimal (of unbounded clique-width) if:
• C has unbounded clique-width, and
• any proper subclass D ⊊ C has bounded clique-width.

Bipartite permutation graphs (Lozin, 2011)

Class comprises all induced subgraphs of grids like the following:



Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Not if you want it to mention just one ‘grid’

Since bipartite permutation graphs and unit interval graphs are both minimal
of unbounded clique-width, there are at least two grids. . .

. . . but perhaps we could list the minimal classes?



Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Not if you want it to mention just one ‘grid’

Since bipartite permutation graphs and unit interval graphs are both minimal
of unbounded clique-width, there are at least two grids. . .

. . . but perhaps we could list the minimal classes?



Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Not if you want it to mention just one ‘grid’

Since bipartite permutation graphs and unit interval graphs are both minimal
of unbounded clique-width, there are at least two grids. . .

. . . but perhaps we could list the minimal classes?



Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

2015 (published 2021) Atminas, B., Lozin & Stacho:
split permutation graphs and bichain graphs.

2018 Collins, Foniok, Korpelainen, Lozin & Zamaraev:
countably infinite collection of minimal classes

2022 B. & Cocks: uncountably infinite collection

2023 B. & Cocks: General framework for all the above classes.



Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

2015 (published 2021) Atminas, B., Lozin & Stacho:
split permutation graphs and bichain graphs.

2018 Collins, Foniok, Korpelainen, Lozin & Zamaraev:
countably infinite collection of minimal classes

2022 B. & Cocks: uncountably infinite collection

2023 B. & Cocks: General framework for all the above classes.



Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

2015 (published 2021) Atminas, B., Lozin & Stacho:
split permutation graphs and bichain graphs.

2018 Collins, Foniok, Korpelainen, Lozin & Zamaraev:
countably infinite collection of minimal classes

2022 B. & Cocks: uncountably infinite collection

2023 B. & Cocks: General framework for all the above classes.



Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

2015 (published 2021) Atminas, B., Lozin & Stacho:
split permutation graphs and bichain graphs.

2018 Collins, Foniok, Korpelainen, Lozin & Zamaraev:
countably infinite collection of minimal classes

2022 B. & Cocks: uncountably infinite collection

2023 B. & Cocks: General framework for all the above classes.



Discovering minimal classes

2011 Lozin: bipartite permutation graphs and unit interval graphs.

2015 (published 2021) Atminas, B., Lozin & Stacho:
split permutation graphs and bichain graphs.

2018 Collins, Foniok, Korpelainen, Lozin & Zamaraev:
countably infinite collection of minimal classes

2022 B. & Cocks: uncountably infinite collection

2023 B. & Cocks: General framework for all the above classes.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



The framework

α

β
γ

0 1 2 1 0 3 3 2 2 0 2 0 0 . . . ∈ {0, 1, 2, 3}∗

1 0 0 1 0 1 1 0 0 1 1 0 1 0 . . . ∈ {0, 1}∗

(1, 3), (2, 4), (5, 9), (9, 11), (10, 13), . . . ⊆ N× N

In α: 0 = matching, 1 = co-matching, 2 = half-graph, 3 = co-half-graph.

In β: 0 = independent set, 1 = clique.

In γ: (i, j) joins all of column i to column j.



From grids to classes

Each triple δ = (α,β,γ) defines an infinite graph Hδ, and then

Gδ = {G finite : G ⩽ind Hδ}.

Theorem (B. & Cocks, 2023)

There exists a parameter Nδ relying only on δ such that cw(Gδ) is unbounded
if and only if Nδ is unbounded.

Nδ is unbounded, for example, if α contains infinitely many 2s or 3s.



From grids to classes

Each triple δ = (α,β,γ) defines an infinite graph Hδ, and then

Gδ = {G finite : G ⩽ind Hδ}.

Theorem (B. & Cocks, 2023)

There exists a parameter Nδ relying only on δ such that cw(Gδ) is unbounded
if and only if Nδ is unbounded.

Nδ is unbounded, for example, if α contains infinitely many 2s or 3s.



Uncountably many minimal classes

Not all classes Gδ of unbounded clique width are minimal, but lots are. One
simple family is as follows:

Theorem (B. & Cocks, 2022)

Let β = 00 · · · , γ = ∅ and let α be any infinite uniformly recurrent word
over the alphabet {0, 1, 2, 3} other than 00 · · · .
Then G(α,β,γ) is a minimal hereditary class of unbounded clique width.

Uniformly recurrent: every factor w of α is guaranteed to appear in α

infinitely often, and consecutive occurrences are ‘close’.

Sturmian sequences are an uncountably large collection of uniformly
recurrent binary sequences ⇒ uncountably many minimal classes.



Uncountably many minimal classes

Not all classes Gδ of unbounded clique width are minimal, but lots are. One
simple family is as follows:

Theorem (B. & Cocks, 2022)

Let β = 00 · · · , γ = ∅ and let α be any infinite uniformly recurrent word
over the alphabet {0, 1, 2, 3} other than 00 · · · .
Then G(α,β,γ) is a minimal hereditary class of unbounded clique width.

Uniformly recurrent: every factor w of α is guaranteed to appear in α

infinitely often, and consecutive occurrences are ‘close’.

Sturmian sequences are an uncountably large collection of uniformly
recurrent binary sequences ⇒ uncountably many minimal classes.



Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Well, you can’t list them all. . .

. . . but perhaps we are now close to a complete characterisation?



Is there a ‘grid theorem’ for bounding clique-width in hereditary classes?

Well, you can’t list them all. . .

. . . but perhaps we are now close to a complete characterisation?



Dragons

‘Power graphs’ discovered by Lozin, Razgon & Zamaraev (2018),
proved minimal by Dawar & Sankaran (2023):

Not part of the previous framework. Also, this class is well-quasi-ordered (if
you know what that means).



Worse Dragons

Korpelainen (2016): The following class has unbounded clique width but
does not contain a minimal class:



Sparse dragons

Theorem (Gurski & Wanke, 2000)

If a hereditary class is sparse, then it has unbounded clique-width if and only
if it has unbounded tree-width.

Classifying bounded tree-width in sparse graphs is a major topic in itself.

Conjecture (Cocks, 2024+)

Sparse hereditary graph classes of unbounded tree-width do not contain a
minimal class of unbounded tree-width.



Sparse dragons

Theorem (Gurski & Wanke, 2000)

If a hereditary class is sparse, then it has unbounded clique-width if and only
if it has unbounded tree-width.

Classifying bounded tree-width in sparse graphs is a major topic in itself.

Conjecture (Cocks, 2024+)

Sparse hereditary graph classes of unbounded tree-width do not contain a
minimal class of unbounded tree-width.



Thanks!

Main references:

• B. & Cocks, Uncountably many minimal hereditary classes of graphs of
unbounded clique-width, Elec. J. Combin. 29 (2022)

• B. & Cocks, A framework for minimal hereditary classes of graphs of
unbounded clique-width, SIAM J. Disc. Math. 37 (2023)


