Antichains and the Structure of Permutation Classes

Robert Brignall

Heilbronn Institute for Mathematical Research University of Bristol

Thursday 13th May, 2010

Outline

Introduction

- Permutation classes
- Enumeration
- Partial well-order and antichains

2 Simple permutations

- Intervals
- Substitution decomposition
- Finitely many simples

3 Grid classes

- Introduction
- Monotone classes and partial well-order
- Far beyond monotone
- Nearly monotone

Summary

Outline

Introduction

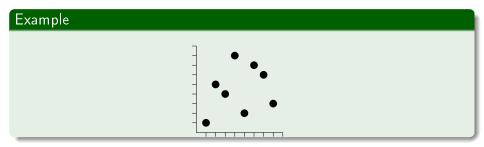
- Permutation classes
- Enumeration
- Partial well-order and antichains

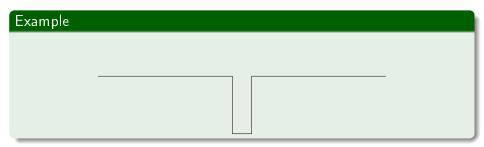
- Intervals
- Substitution decomposition
- Finitely many simples

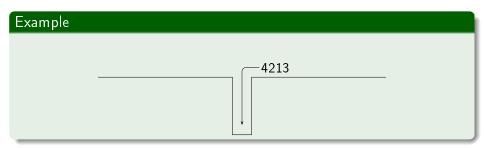
- Introduction
- Monotone classes and partial well-order
- Far beyond monotone
- Nearly monotone

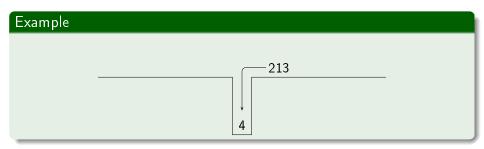
- Permutation of length *n*: an ordering on the symbols 1,..., *n*.
- For example: $\pi = 15482763$.

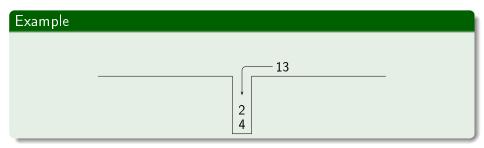
- Permutation of length n: an ordering on the symbols 1, ..., n.
- For example: $\pi = 15482763$.
- Graphical viewpoint: plot the points $(i, \pi(i))$.

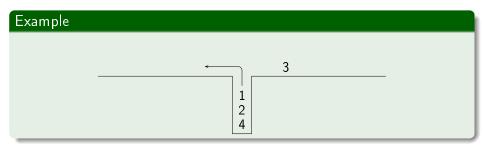


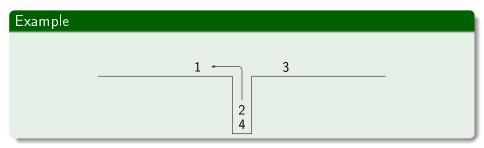


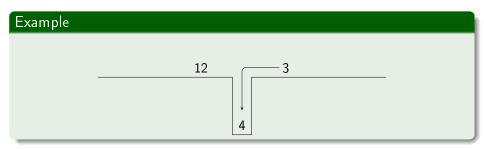


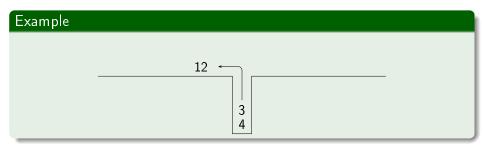


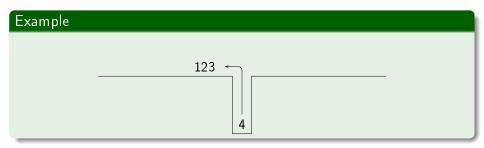








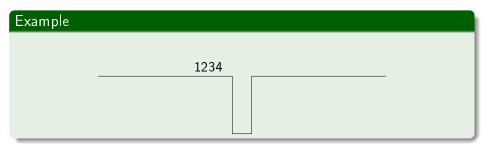


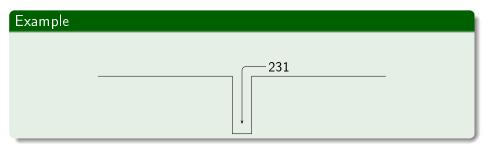


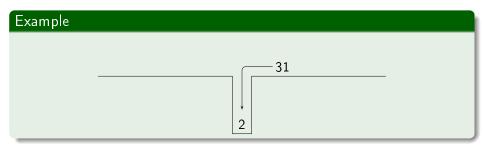
Robert Brignall (Bristol)

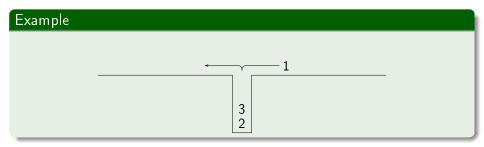
Structure of Permutation Classes

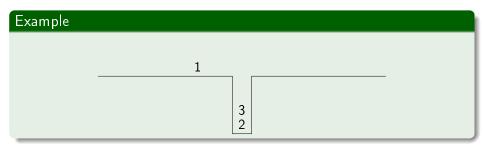
13th May 2010 5 / 35



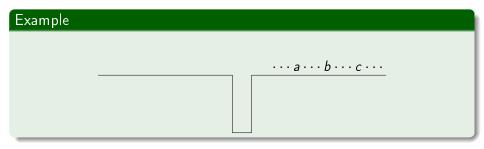








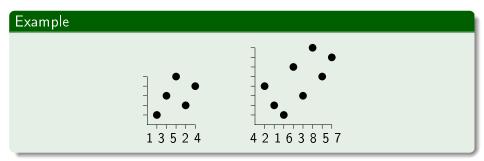
• 231 is not stack-sortable.



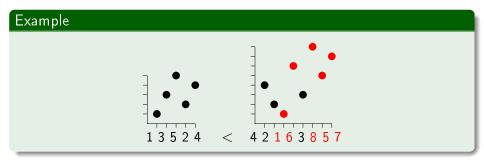
- 231 is not stack-sortable.
- In general: can't sort any permutation with a subsequence abc such that c < a < b. (abc forms a 231 "pattern".)

• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .

• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .



• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .



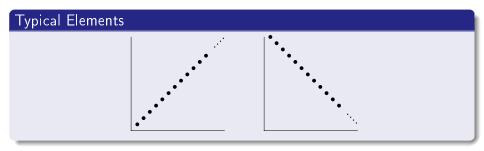
- Containment forms a partial order on the set of all permutations. (Reflexive, antisymmetric, transitive.)
- Downwards-closed sets in this partial order form permutation classes. i.e. $\pi \in C$ and $\sigma \leq \pi$ implies $\sigma \in C$.

- Containment forms a partial order on the set of all permutations. (Reflexive, antisymmetric, transitive.)
- Downwards-closed sets in this partial order form permutation classes. i.e. $\pi \in C$ and $\sigma \leq \pi$ implies $\sigma \in C$.
- A permutation class C can be seen to avoid certain permutations. Write $C = Av(B) = \{\pi : \beta \leq \pi \text{ for all } \beta \in B\}.$
- The minimal avoidance set is the basis. It is unique but need not be finite.
- E.g. the stack-sortable permutations are Av(231).

- Containment forms a partial order on the set of all permutations. (Reflexive, antisymmetric, transitive.)
- Downwards-closed sets in this partial order form permutation classes. i.e. $\pi \in C$ and $\sigma \leq \pi$ implies $\sigma \in C$.
- A permutation class C can be seen to avoid certain permutations. Write $C = Av(B) = \{\pi : \beta \leq \pi \text{ for all } \beta \in B\}.$
- The minimal avoidance set is the basis. It is unique but need not be finite.
- E.g. the stack-sortable permutations are Av(231).
- Graph theoretic analogue: hereditary properties of graphs (e.g. triangle-free graphs, planar graphs, ...).

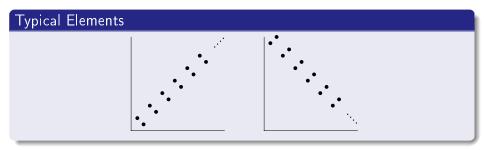
• $Av(21) = \{1, 12, 123, 1234, \ldots\}$, the increasing permutations.

• $\mathsf{Av}(12) = \{1, 21, 321, 4321, \ldots\},$ the decreasing permutations.



•
$$\oplus 21 = Av(321, 312, 231) = \{1, 12, 21, 123, 132, 213, \ldots\}.$$

• $\ominus 12 = Av(123, 213, 132) = \{1, 12, 21, 231, 312, 321, \ldots\}.$



- C_n permutations in C of length n.
- $\sum |C_n| x^n$ is the generating function.

Example

The generating function of $\mathcal{C}=\mathsf{Av}(12)$ is:

$$1 + x + x^2 + x^3 + \cdots = \frac{1}{1 - x}$$

Theorem (Marcus and Tardos, 2004)

For every permutation class C other than the class of all permutations, there exists a constant K such that

$$\limsup_{n\to\infty}\sqrt[n]{|\mathcal{C}_n|}\leq K.$$

• Upper growth rate of C is $\limsup_{n \to \infty} \sqrt[n]{|C_n|}$.

Theorem (Marcus and Tardos, 2004)

For every permutation class C other than the class of all permutations, there exists a constant K such that

$$\limsup_{n\to\infty}\sqrt[n]{|\mathcal{C}_n|}\leq K.$$

• Upper growth rate of C is $\limsup_{n \to \infty} \sqrt[n]{|C_n|}$.

• Big open question: does the growth rate, $\lim_{n\to\infty} \sqrt[n]{|C_n|}$, always exist?

• Stack sortable permutations Av(231) enumerated by the Catalan numbers. Generating function:

$$f(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = 1 + x + 2x^2 + 5x^3 + 14x^4 + \dots$$

• Stack sortable permutations Av(231) enumerated by the Catalan numbers. Generating function:

$$f(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = 1 + x + 2x^2 + 5x^3 + 14x^4 + \dots$$

• Using the Robinson-Schensted-Knuth correspondence with Young Tableaux, $|Av(321)|_n = |Av(231)|_n$.

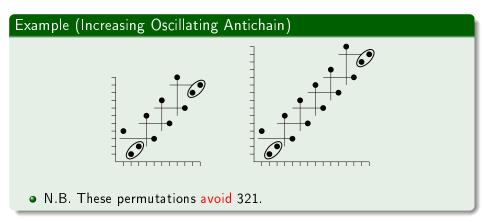
• Stack sortable permutations Av(231) enumerated by the Catalan numbers. Generating function:

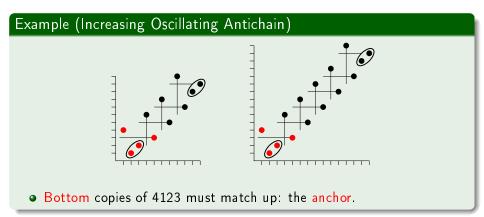
$$f(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = 1 + x + 2x^2 + 5x^3 + 14x^4 + \dots$$

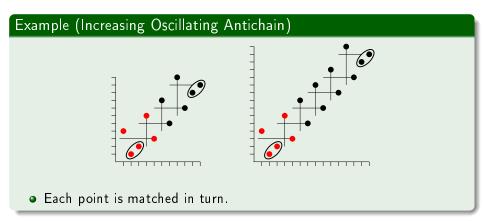
- Using the Robinson-Schensted-Knuth correspondence with Young Tableaux, $|Av(321)|_n = |Av(231)|_n$.
- Despite being equinumerous, these two classes are very different: Av(321) contains infinite antichains and hence has uncountably many subclasses, while Av(231) does not.

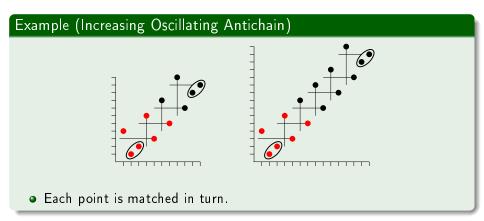
• (Infinite) set of pairwise incomparable permutations.

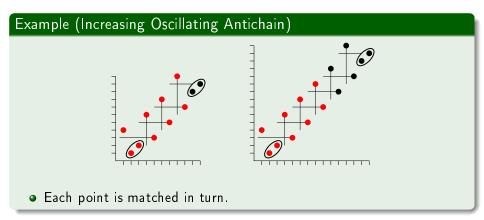
• (Infinite) set of pairwise incomparable permutations.

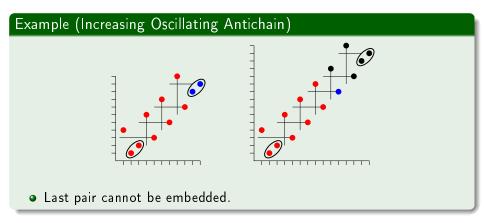












No infinite antichains.

- Words over a finite alphabet [Higman].
- Graphs closed under minors [Robertson and Seymour].

Infinite antichains.

- Graphs closed under induced subgraphs (or merely subgraphs). e.g. C₃, C₄, C₅,...
- Permutations closed under containment.
- Tournaments, digraphs, ...

• A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

• A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a permutation class given by a finite basis is pwo?

- To prove pwo Higman's theorem is useful.
- To prove not pwo find an antichain.

• A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a hereditary property given by a finite basis is wqo?

- To prove pwo Higman's theorem is useful.
- To prove not pwo find an antichain.
- Other structures: well quasi-order, not pwo, but same idea.

Outline

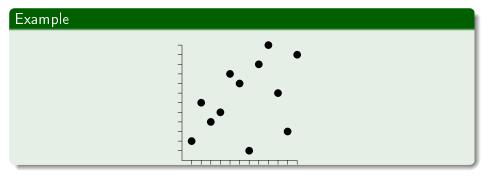
- Permutation classes
- Enumeration
- Partial well-order and antichains

2 Simple permutations

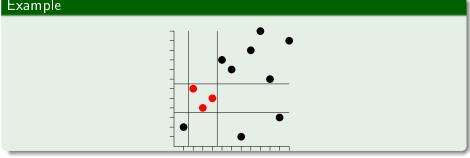
- Intervals
- Substitution decomposition
- Finitely many simples

- Introduction
- Monotone classes and partial well-order
- Far beyond monotone
- Nearly monotone

- Pick any permutation π .
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.



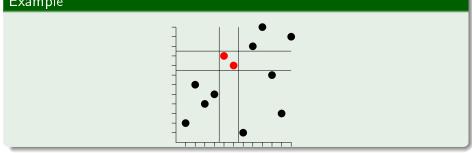
- Pick any permutation π .
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.



Robert Brignall (Bristol)

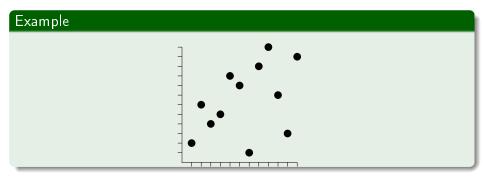
- Pick any permutation π .
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.

Example

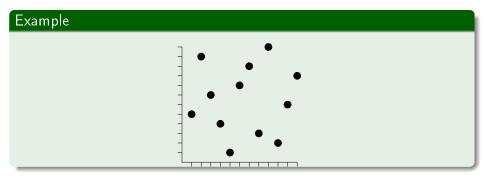


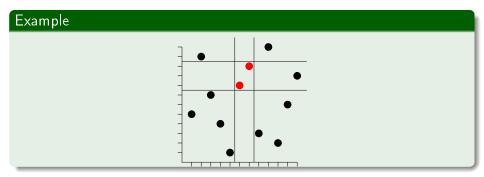
Robert Brignall (Bristol)

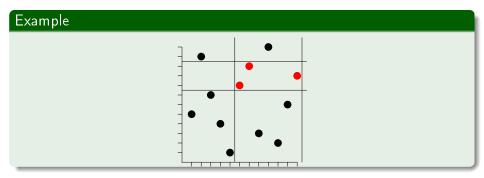
- Pick any permutation π .
- An interval of π is a set of contiguous indices I = [a, b] such that $\pi(I) = {\pi(i) : i \in I}$ is also contiguous.
- Intervals are important in biomathematics (genetic algorithms, matching gene sequences).

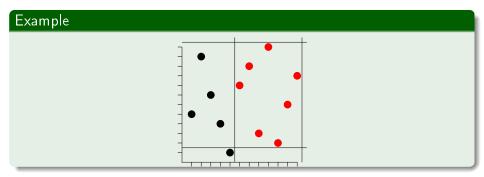


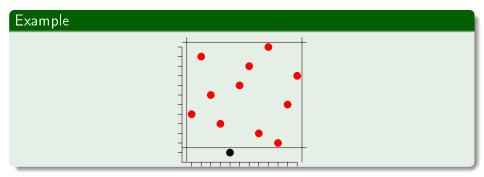
Robert Brignall (Bristol)

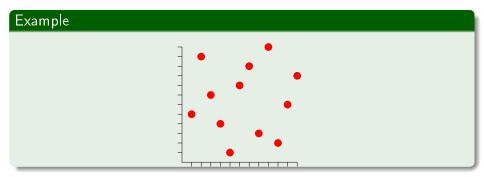


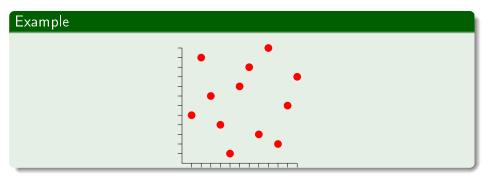






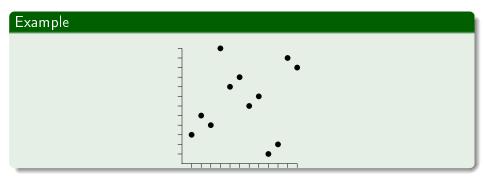






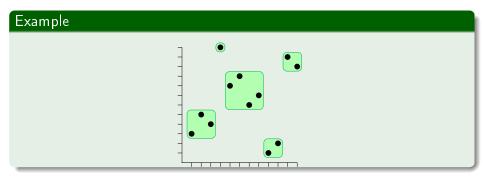
- 1 is simple, as are 12 and 21.
- There are no simple permutations of length three.
- Two of length four: 2413 and 3142.

• Simple permutations are the "building blocks" of all permutations.

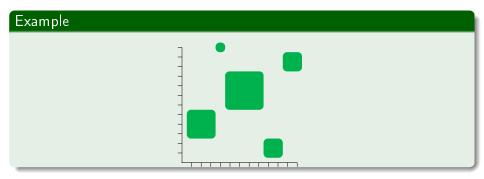


Decomposing Permutations

- Simple permutations are the "building blocks" of all permutations.
- Break permutation into maximal proper intervals.

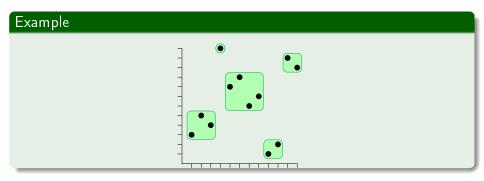


- Simple permutations are the "building blocks" of all permutations.
- Break permutation into maximal proper intervals.
- Gives a unique simple permutation, the skeleton.

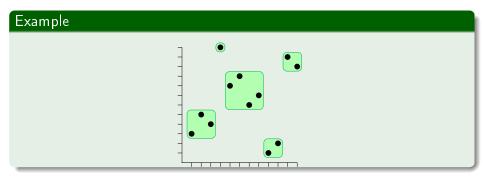


Decomposing Permutations

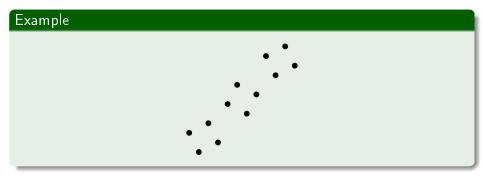
- Simple permutations are the "building blocks" of all permutations.
- If simple has > 2 points then the blocks are unique.



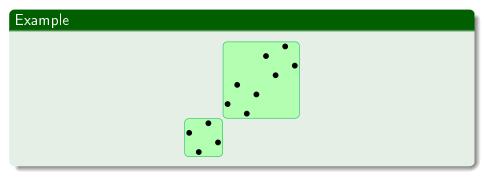
- Simple permutations are the "building blocks" of all permutations.
- If simple has > 2 points then the blocks are unique.
- This decomposition is the substitution decomposition.



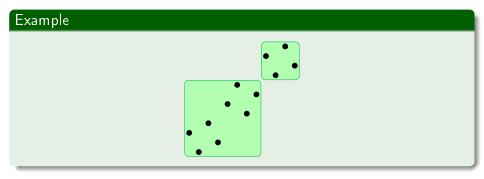
• Simple permutation of length 2: block decomposition is not unique.



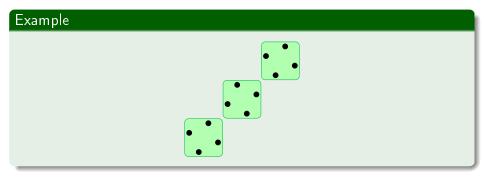
• Simple permutation of length 2: block decomposition is not unique.



• Simple permutation of length 2: block decomposition is not unique.



• Underlying structure is an increasing permutation.



- They have a finite basis.
- They are enumerated by algebraic generating functions.
- They are partially well-ordered.

- They have a finite basis.
- They are enumerated by algebraic generating functions.
- They are partially well-ordered.

Theorem (B., Ruškuc and Vatter, 2008)

It is possible to decide whether a permutation class given by a finite basis contains infinitely many simple permutations.

- They have a finite basis.
- They are enumerated by algebraic generating functions.
- They are partially well-ordered.

Theorem (B., Ruškuc and Vatter, 2008)

It is possible to decide whether a permutation class given by a finite basis contains infinitely many simple permutations.

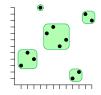
• There should be a graph-theoretic analogue of this result!

Finitely Many Simples \Rightarrow Partially Well-Ordered



- Take a class C containing a finite set S of simple permutations.
- Every permutation in C has a skeleton from S.

Finitely Many Simples \Rightarrow Partially Well-Ordered



- Take a class C containing a finite set S of simple permutations.
- Every permutation in C has a skeleton from S.
- Think of each $\sigma \in S$ of length *n* as an *n*-ary operation.
- Starting with the permutation 1, we build every permutation in the class C by recursively using this finite set of operations.

Finitely Many Simples \Rightarrow Partially Well-Ordered



- Take a class C containing a finite set S of simple permutations.
- Every permutation in C has a skeleton from S.
- Think of each $\sigma \in S$ of length n as an n-ary operation.
- Starting with the permutation 1, we build every permutation in the class C by recursively using this finite set of operations.
- Now use Higman's Theorem.

Outline

- Permutation classes
- Enumeration
- Partial well-order and antichains

- Intervals
- Substitution decomposition
- Finitely many simples

Grid classes

- Introduction
- Monotone classes and partial well-order
- Far beyond monotone
- Nearly monotone

Grid Classes

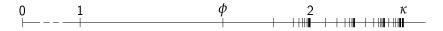
- $\bullet~\mathsf{Matrix}~\mathcal{M}$ whose entries are permutation classes.
- Grid(\mathcal{M}) the grid class of \mathcal{M} : all permutations which can be "gridded" so each cell satisfies constraints of \mathcal{M} .

Example

• Let
$$\mathcal{M} = \begin{pmatrix} Av(21) & Av(231) & \emptyset \\ Av(123) & \emptyset & Av(12) \end{pmatrix}$$
.

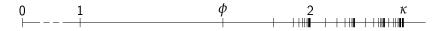
• Recall: Growth rate of C is $\lim_{n\to\infty} \sqrt[n]{|C_n|}$ (if it exists).

- Recall: Growth rate of C is $\lim_{n \to \infty} \sqrt[n]{|C_n|}$ (if it exists).
- Using grid classes: Below $\kappa \approx 2.20557$, growth rates exist and can be characterised [Kaiser and Klazar; Vatter]:



• κ is the lowest growth rate where we encounter infinite antichains, and hence uncountably many permutation classes.

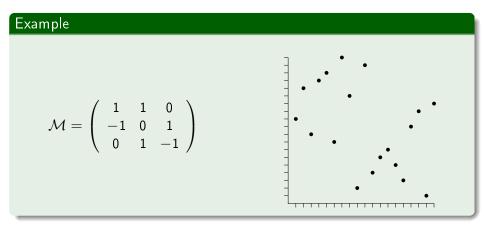
- Recall: Growth rate of C is $\lim_{n\to\infty} \sqrt[n]{|C_n|}$ (if it exists).
- Using grid classes: Below $\kappa \approx 2.20557$, growth rates exist and can be characterised [Kaiser and Klazar; Vatter]:



- κ is the lowest growth rate where we encounter infinite antichains, and hence uncountably many permutation classes.
- Cf "canonical properties" of graphs [Balogh, Bollobás and Weinreich].

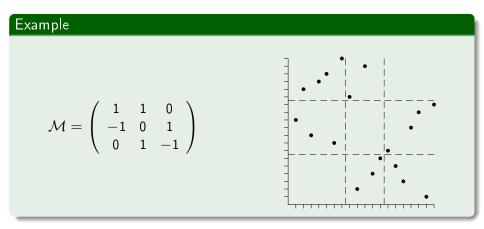
Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.



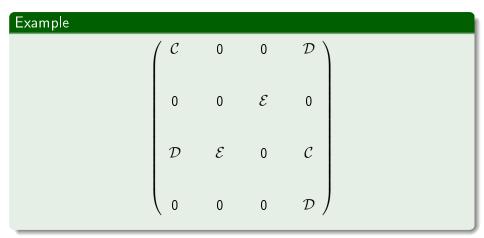
Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.



The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

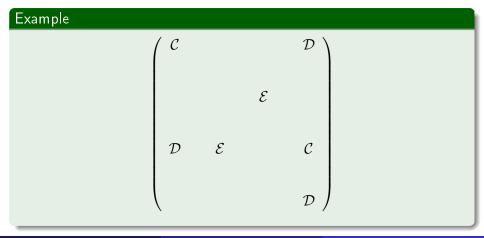


Robert Brignall (Bristol)

Structure of Permutation Classes

The Graph of a Matrix

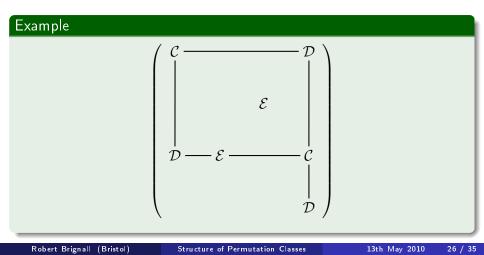
• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.



Robert Brignall (Bristol)

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

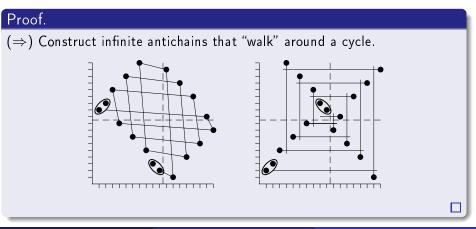


Theorem (Murphy and Vatter, 2003)

The monotone grid class $Grid(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, *i.e.* $G(\mathcal{M})$ contains no cycles.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\operatorname{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, *i.e.* $G(\mathcal{M})$ contains no cycles.



Question

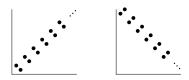
When is a class C (a subset of) a monotone grid class?

Question

When is a class C (a subset of) a monotone grid class?

Answer [Huczynska and Vatter]

A class C is monotone griddable if and only if it contains neither the classes $\oplus 21$ nor $\oplus 12$.



Non-monotone cells

• If a class is not monotone griddable, then perhaps it can be gridded by a matrix which is mostly monotone:

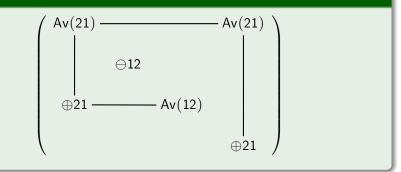
Example

1	(Av(21)	0	0	Av(21)	
	0	⊖12	0	0	
	⊕21	0	Av(12)	0	
	0	0	0	⊕21)	

Non-monotone cells

• If a class is not monotone griddable, then perhaps it can be gridded by a matrix which is mostly monotone:

Example



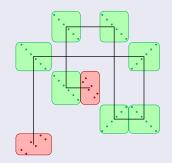
• To be pwo, graph must still be a forest, but now the number of non-monotone-griddable cells in each component matters.

Robert Brignall (Bristol)

Structure of Permutation Classes

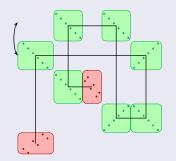
A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.

Proof.



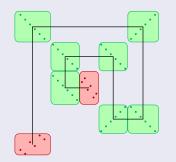
• WLOG graph is a path connecting two bad cells.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



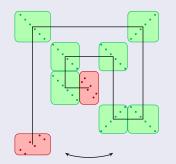
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



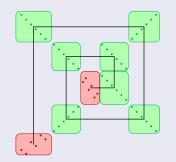
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



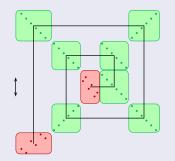
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



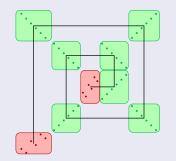
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



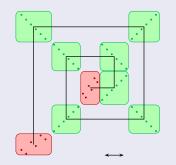
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



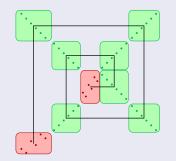
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



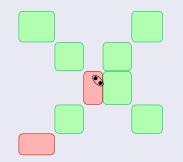
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



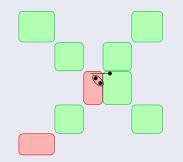
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



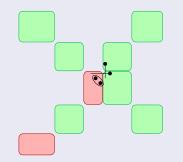
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



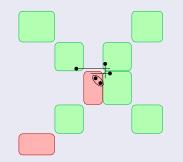
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



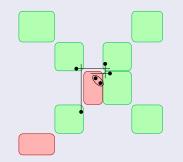
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



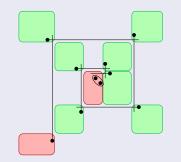
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



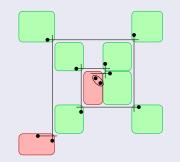
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



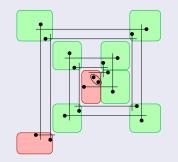
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



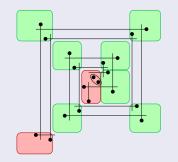
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



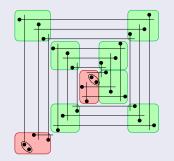
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



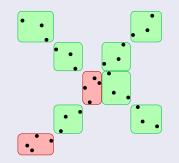
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



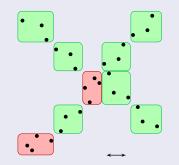
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



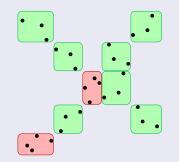
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



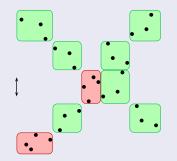
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



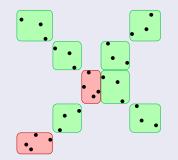
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



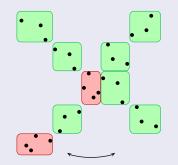
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



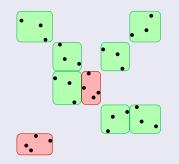
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



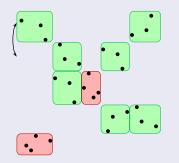
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



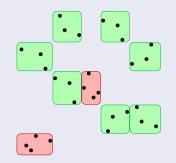
- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

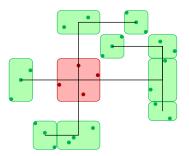
A grid class whose graph has a component containing two or more non-monotone-griddable classes is not pwo.



- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.
- Still have an antichain.

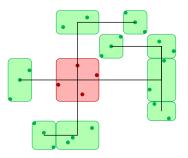
Just one non-monotone

• Suppose the bad cell contains only finitely many simple permutations.



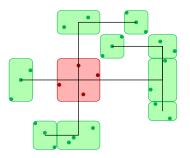
Just one non-monotone

- Suppose the bad cell contains only finitely many simple permutations.
- Build permutations component-wise: use the substitution decomposition on the red cell, and view each component as a tree rooted on this cell.

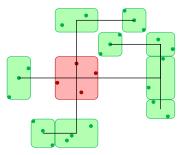


Just one non-monotone

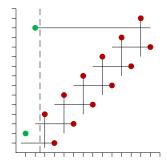
- Suppose the bad cell contains only finitely many simple permutations.
- Build permutations component-wise: use the substitution decomposition on the red cell, and view each component as a tree rooted on this cell.
- This defines a construction for all permutations in the grid class, which is amenable to Higman's Theorem.



Let \mathcal{M} be a gridding matrix for which each component is a forest and contains at most one non-monotone cell. If every non-monotone cell contains only finitely many simple permutations, then $\operatorname{Grid}(\mathcal{M})$ is pwo.



• One cell containing arbitrarily long increasing oscillations next to a monotone cell is bad...



Outline

- Permutation classes
- Enumeration
- Partial well-order and antichains

- Intervals
- Substitution decomposition
- Finitely many simples

- Introduction
- Monotone classes and partial well-order
- Far beyond monotone
- Nearly monotone

Summary

- Two non-monotone per component: class not pwo.
- One non-monotone but finitely many simples: class is pwo.

- Two non-monotone per component: class not pwo.
- One non-monotone but finitely many simples: class is pwo.
- To-do: one non-monotone but infinitely many simples (some antichains known).

- Two non-monotone per component: class not pwo.
- One non-monotone but finitely many simples: class is pwo.
- To-do: one non-monotone but infinitely many simples (some antichains known).

Question

Can we decide whether a permutation class given by a finite basis is pwo?

• There are still a lot of obstacles, but maybe we're a bit closer.

Thanks!