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Setting the SenePermutation of length n: an ordering on the symbols 1, . . . , n.For example: π = 15482763.
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Setting the SenePermutation of length n: an ordering on the symbols 1, . . . , n.For example: π = 15482763.Graphial viewpoint: plot the points (i , π(i)).Example
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Stak SortingKnuth (1969): what permutations an be sorted through a stak?Example
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Stak SortingKnuth (1969): what permutations an be sorted through a stak?Example 231
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Stak SortingKnuth (1969): what permutations an be sorted through a stak?Example 123
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Stak SortingKnuth (1969): what permutations an be sorted through a stak?Example 1 23231 is not stak-sortable.
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Stak SortingKnuth (1969): what permutations an be sorted through a stak?Example
· · · a · · · b · · ·  · · ·

231 is not stak-sortable.In general: an't sort any permutation with a subsequene ab suhthat  < a < b. (ab forms a 231 �pattern�.)Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 5 / 35



ContainmentA permutation τ = τ(1) · · · τ(k) is ontained in the permutation
σ = σ(1)σ(2) · · · σ(n) if there exists a subsequene
σ(i1)σ(i2) · · · σ(ik ) order isomorphi to τ.
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σ = σ(1)σ(2) · · · σ(n) if there exists a subsequene
σ(i1)σ(i2) · · · σ(ik ) order isomorphi to τ.Example
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Permutation ClassesContainment forms a partial order on the set of all permutations.(Re�exive, antisymmetri, transitive.)Downwards-losed sets in this partial order form permutation lasses.i.e. π ∈ C and σ ≤ π implies σ ∈ C.
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Permutation ClassesContainment forms a partial order on the set of all permutations.(Re�exive, antisymmetri, transitive.)Downwards-losed sets in this partial order form permutation lasses.i.e. π ∈ C and σ ≤ π implies σ ∈ C.A permutation lass C an be seen to avoid ertain permutations.Write C = Av(B) = {π : β 6≤ π for all β ∈ B}.The minimal avoidane set is the basis. It is unique but need not be�nite.E.g. the stak-sortable permutations are Av(231).
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Permutation ClassesContainment forms a partial order on the set of all permutations.(Re�exive, antisymmetri, transitive.)Downwards-losed sets in this partial order form permutation lasses.i.e. π ∈ C and σ ≤ π implies σ ∈ C.A permutation lass C an be seen to avoid ertain permutations.Write C = Av(B) = {π : β 6≤ π for all β ∈ B}.The minimal avoidane set is the basis. It is unique but need not be�nite.E.g. the stak-sortable permutations are Av(231).Graph theoreti analogue: hereditary properties of graphs(e.g. triangle-free graphs, planar graphs, . . .).Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 7 / 35



Easy ExamplesAv(21) = {1, 12, 123, 1234, . . .}, the inreasing permutations.Av(12) = {1, 21, 321, 4321, . . .}, the dereasing permutations.Typial Elements
Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 8 / 35



Easy Examples
⊕21 = Av(321, 312, 231) = {1, 12, 21, 123, 132, 213, . . .}.
⊖12 = Av(123, 213, 132) = {1, 12, 21, 231, 312, 321, . . .}.Typial Elements
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Exat Enumeration
Cn � permutations in C of length n.
∑ |Cn|xn is the generating funtion.ExampleThe generating funtion of C = Av(12) is:1+ x + x2 + x3 + · · · =

11− x
Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 9 / 35



Asymptoti EnumerationTheorem (Marus and Tardos, 2004)For every permutation lass C other than the lass of all permutations,there exists a onstant K suh thatlim supn→∞

n√|Cn | ≤ K .Upper growth rate of C is lim supn→∞

n√|Cn |.
Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 10 / 35



Asymptoti EnumerationTheorem (Marus and Tardos, 2004)For every permutation lass C other than the lass of all permutations,there exists a onstant K suh thatlim supn→∞

n√|Cn | ≤ K .Upper growth rate of C is lim supn→∞

n√|Cn |.Big open question: does the growth rate, limn→∞

n√|Cn|, always exist?
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Av(321) vs Av(231)Stak sortable permutations Av(231) enumerated by the Catalannumbers. Generating funtion:f (x) =
1−√1− 4x2x = 1+ x + 2x2 + 5x3 + 14x4 + . . .
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1−√1− 4x2x = 1+ x + 2x2 + 5x3 + 14x4 + . . .Using the Robinson-Shensted-Knuth orrespondene with YoungTableaux, |Av(321)|n = |Av(231)|n.
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Av(321) vs Av(231)Stak sortable permutations Av(231) enumerated by the Catalannumbers. Generating funtion:f (x) =
1−√1− 4x2x = 1+ x + 2x2 + 5x3 + 14x4 + . . .Using the Robinson-Shensted-Knuth orrespondene with YoungTableaux, |Av(321)|n = |Av(231)|n.Despite being equinumerous, these two lasses are very di�erent:Av(321) ontains in�nite antihains and hene has unountably manysublasses, while Av(231) does not.
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In�nite Antihains(In�nite) set of pairwise inomparable permutations.
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In�nite Antihains(In�nite) set of pairwise inomparable permutations.Example (Inreasing Osillating Antihain)
N.B. These permutations avoid 321.Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 12 / 35



In�nite Antihains(In�nite) set of pairwise inomparable permutations.Example (Inreasing Osillating Antihain)
Bottom opies of 4123 must math up: the anhor.Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 12 / 35



In�nite Antihains(In�nite) set of pairwise inomparable permutations.Example (Inreasing Osillating Antihain)
Eah point is mathed in turn.Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 12 / 35
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In�nite Antihains(In�nite) set of pairwise inomparable permutations.Example (Inreasing Osillating Antihain)
Last pair annot be embedded.Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 12 / 35



When are there antihains?No in�nite antihains.Words over a �nite alphabet [Higman℄.Graphs losed under minors [Robertson and Seymour℄.In�nite antihains.Graphs losed under indued subgraphs (or merely subgraphs). e.g.C3,C4,C5, . . .Permutations losed under ontainment.Tournaments, digraphs, . . .
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Partial Well Order
A permutation lass is partially well-ordered (pwo) if it ontains noin�nite antihains.
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Partial Well Order
A permutation lass is partially well-ordered (pwo) if it ontains noin�nite antihains.QuestionCan we deide whether a permutation lass given by a �nite basis is pwo?To prove pwo � Higman's theorem is useful.To prove not pwo � �nd an antihain.
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Partial Well Order
A permutation lass is partially well-ordered (pwo) if it ontains noin�nite antihains.QuestionCan we deide whether a hereditary property given by a �nite basis is wqo?To prove pwo � Higman's theorem is useful.To prove not pwo � �nd an antihain.Other strutures: well quasi-order, not pwo, but same idea.
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IntervalsPik any permutation π.An interval of π is a set of ontiguous indies I = [a, b] suh that
π(I ) = {π(i) : i ∈ I} is also ontiguous.Example
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IntervalsPik any permutation π.An interval of π is a set of ontiguous indies I = [a, b] suh that
π(I ) = {π(i) : i ∈ I} is also ontiguous.Intervals are important in biomathematis (geneti algorithms,mathing gene sequenes).Example
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Simple PermutationsA simple permutation: The only intervals are singletons and the wholething.
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Simple PermutationsA simple permutation: The only intervals are singletons and the wholething.Example
1 is simple, as are 12 and 21.There are no simple permutations of length three.Two of length four: 2413 and 3142.Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 17 / 35



Deomposing PermutationsSimple permutations are the �building bloks� of all permutations.Example
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Deomposing PermutationsSimple permutations are the �building bloks� of all permutations.Break permutation into maximal proper intervals.Example
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Deomposing PermutationsSimple permutations are the �building bloks� of all permutations.Break permutation into maximal proper intervals.Gives a unique simple permutation, the skeleton.Example
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Deomposing PermutationsSimple permutations are the �building bloks� of all permutations.If simple has > 2 points then the bloks are unique.Example
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Deomposing PermutationsSimple permutations are the �building bloks� of all permutations.If simple has > 2 points then the bloks are unique.This deomposition is the substitution deomposition.Example
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Non-uniquenessSimple permutation of length 2: blok deomposition is not unique.Example
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Non-uniquenessSimple permutation of length 2: blok deomposition is not unique.Example
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Non-uniquenessUnderlying struture is an inreasing permutation.Example
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Finitely Many SimplesUsing the substitution deomposition, we an say a lot about permutationlasses that ontain only �nitely many simples [Albert and Atkinson, 2005℄:
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Finitely Many SimplesUsing the substitution deomposition, we an say a lot about permutationlasses that ontain only �nitely many simples [Albert and Atkinson, 2005℄:They have a �nite basis.They are enumerated by algebrai generating funtions.They are partially well-ordered.Theorem (B., Ru²ku and Vatter, 2008)It is possible to deide whether a permutation lass given by a �nite basisontains in�nitely many simple permutations.There should be a graph-theoreti analogue of this result!Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 20 / 35



Finitely Many Simples ⇒ Partially Well-Ordered
Take a lass C ontaining a �nite set S of simple permutations.Every permutation in C has a skeleton from S .
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Take a lass C ontaining a �nite set S of simple permutations.Every permutation in C has a skeleton from S .Think of eah σ ∈ S of length n as an n-ary operation.Starting with the permutation 1, we build every permutation in thelass C by reursively using this �nite set of operations.Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 21 / 35



Finitely Many Simples ⇒ Partially Well-Ordered
Take a lass C ontaining a �nite set S of simple permutations.Every permutation in C has a skeleton from S .Think of eah σ ∈ S of length n as an n-ary operation.Starting with the permutation 1, we build every permutation in thelass C by reursively using this �nite set of operations.Now use Higman's Theorem.Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 21 / 35
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Grid ClassesMatrix M whose entries are permutation lasses.
Grid(M) the grid lass of M: all permutations whih an be�gridded� so eah ell satis�es onstraints of M.ExampleLet M =

( Av(21) Av(231) ∅Av(123) ∅ Av(12) ).
∈ Grid(M)
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Grid lasses are useful
Reall: Growth rate of C is limn→∞

n√|Cn| (if it exists).
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Grid lasses are useful
Reall: Growth rate of C is limn→∞

n√|Cn| (if it exists).Using grid lasses: Below κ ≈ 2.20557, growth rates exist and an beharaterised [Kaiser and Klazar; Vatter℄:0 1 φ 2 κ

κ is the lowest growth rate where we enounter in�nite antihains, andhene unountably many permutation lasses.
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Grid lasses are useful
Reall: Growth rate of C is limn→∞

n√|Cn| (if it exists).Using grid lasses: Below κ ≈ 2.20557, growth rates exist and an beharaterised [Kaiser and Klazar; Vatter℄:0 1 φ 2 κ

κ is the lowest growth rate where we enounter in�nite antihains, andhene unountably many permutation lasses.Cf �anonial properties� of graphs [Balogh, Bollobás and Weinreih℄.
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Monotone Grid ClassesSpeial ase: all ells of M are Av(21) or Av(12).Rewrite M as a matrix with entries in {0, 1,−1}.Example
M =





1 1 0
−1 0 10 1 −1 
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The Graph of a MatrixGraph of a matrix, G (M), formed by onneting together all non-zeroentries that share a row or olumn and are not �separated� by anyother nonzero entry.Example
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The Graph of a MatrixGraph of a matrix, G (M), formed by onneting together all non-zeroentries that share a row or olumn and are not �separated� by anyother nonzero entry.Example
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The Graph of a MatrixGraph of a matrix, G (M), formed by onneting together all non-zeroentries that share a row or olumn and are not �separated� by anyother nonzero entry.Example
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Monotone Grids and Partial Well-OrderTheorem (Murphy and Vatter, 2003)The monotone grid lass Grid(M) is pwo if and only if G (M) is a forest,i.e. G (M) ontains no yles.
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Monotone Grids and Partial Well-OrderTheorem (Murphy and Vatter, 2003)The monotone grid lass Grid(M) is pwo if and only if G (M) is a forest,i.e. G (M) ontains no yles.Proof.(⇒) Construt in�nite antihains that �walk� around a yle.
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When does that apply?QuestionWhen is a lass C (a subset of) a monotone grid lass?
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When does that apply?QuestionWhen is a lass C (a subset of) a monotone grid lass?Answer [Huzynska and Vatter℄A lass C is monotone griddable if and only if it ontains neither the lasses
⊕21 nor ⊖12.
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Non-monotone ellsIf a lass is not monotone griddable, then perhaps it an be gridded bya matrix whih is mostly monotone:Example
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Non-monotone ellsIf a lass is not monotone griddable, then perhaps it an be gridded bya matrix whih is mostly monotone:Example
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To be pwo, graph must still be a forest, but now the number ofnon-monotone-griddable ells in eah omponent matters.Robert Brignall (Bristol) Struture of Permutation Classes 13th May 2010 29 / 35



Two is too manyTheoremA grid lass whose graph has a omponent ontaining two or morenon-monotone-griddable lasses is not pwo.Proof. WLOG graph is a path onneting twobad ells.
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Just one non-monotoneSuppose the bad ell ontains only �nitely many simple permutations.
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Just one non-monotoneSuppose the bad ell ontains only �nitely many simple permutations.Build permutations omponent-wise: use the substitutiondeomposition on the red ell, and view eah omponent as a treerooted on this ell.This de�nes a onstrution for all permutations in the grid lass,whih is amenable to Higman's Theorem.
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Just one non-monotoneTheoremLet M be a gridding matrix for whih eah omponent is a forest andontains at most one non-monotone ell. If every non-monotone ellontains only �nitely many simple permutations, then Grid(M) is pwo.
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But sometimes one is too muh...One ell ontaining arbitrarily long inreasing osillations next to amonotone ell is bad...
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Summary
Two non-monotone per omponent: lass not pwo.One non-monotone but �nitely many simples: lass is pwo.
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Summary
Two non-monotone per omponent: lass not pwo.One non-monotone but �nitely many simples: lass is pwo.To-do: one non-monotone but in�nitely many simples(some antihains known).QuestionCan we deide whether a permutation lass given by a �nite basis is pwo?There are still a lot of obstales, but maybe we're a bit loser.
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Thanks!
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