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Pattern Involvement

» Regard a permutation of length n as an ordering of the
symbols 1,...,n.

» A permutation 7 = t;t, ...t is involved in the permutation
o =815, ...Sp if there exists a subsequence s;,, Sj,, ..., S;
order isomorphic to 7.

» Write 7 < 0.

» Example: The permutation 13524 is involved in 42163857
because of the sequence 16857.

» Involvement forms a partial order on the set of all
permutations.
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Closed Classes

» A set of permutations X is closed if
ceXandr<o=71¢X.

» Equivalently, a closed class X can be seen to avoid certain
permutations.

» We may describe X in terms of its minimal avoidance set,
or basis - the minimal permutations not in X. Write

X = Av(B)

to mean X has basis B.

» Basis B is not necessarily finite. If it is, then X is finitely
based.



Permutation Structure

Definition
For a permutation o = $1S5...Sp:




Permutation Structure

Definition
For a permutation o = $1S5...Sp:

» A sequence is any set of symbols s; , s;,, .

withip <ip < ... <.

.., S from o



Permutation Structure

Definition
For a permutation o = 1S5 ... Sp:
» A sequence is any set of symbols s; ,s;,,...,s; fromo
withip <ip < ... <.
» A segment is a sequence of adjacent symbols,
Si; Sit1s- -5 Si4j-




Permutation Structure

Definition
For a permutation o = 1S5 ... Sp:
» A sequence is any set of symbols s; ,s;,,...,s; fromo
withip <ip < ... <.
» A segment is a sequence of adjacent symbols,
S, Si+17 RIS SH—]'
» Aninterval or block of o is a segment s;s;; 1 ...Sjj, I
which the set of values is contiguous:
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Wreath Product |

Definition
The wreath product of the set of permutations X with the set of
permutations Y is the set X ' Y of permutations

O =aQ109...0k

such that:
() each qj is an interval,
(i) each «;j is order isomorphic to a permutation of Y,
(iii) if for every i we pick a symbol a; from «j, then a;a, ... ay is
order isomorphic to a permutation in X.
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Example

» X ={1,12}, Y = {1,12,21}:

» XY ={1,12,21,123,132, 213, 1234, 1243, 2134, 2143}.
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basis.

Half the problem: which classes Y obey
X finitely based = X 'Y finitely based?

v

v

v



Wreath Product Il

v

If X and Y are closed then X (Y is closed.
If X and Y are finitely based, is X 'Y finitely based?

Not true — Atkinson proves A(21) ¢ A(321654) has infinite
basis.

Half the problem: which classes Y obey
X finitely based = X 'Y finitely based?
Y has the Wreath Finite Basis Property (WFBP).

v

v

v



Wreath Product Il

v

If X and Y are closed then X (Y is closed.
If X and Y are finitely based, is X 'Y finitely based?

Not true — Atkinson proves A(21) ¢ A(321654) has infinite
basis.

Half the problem: which classes Y obey
X finitely based = X 'Y finitely based?
Y has the Wreath Finite Basis Property (WFBP).

v

v

v

Example
Y = {1}. Then XY = X for any class X.
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» Atkinson, in “Restricted Permutations”.

Example
The profile of 2346751 is

2346751" = 2431

because of the segments 234, 67, 5 and 1.
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Profiles I

Definition
For any closed class Y, the permutation ¢ has Y -profile

o) =s18,...5m
if o can be partitioned into segments
0 = 0102...0m

subject to

() each oj is a non-empty interval, order isomorphic to a
permutation from Y,

(i) oi < ojifandonlyifs; <s;.
Made unique by first picking o3 maximally, then o, then o3, etc.
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Profiles IlI

Example
Let Y = A(231), the stack sortable permutations.

» What is the Y -profile of 0 = 243516877

» Answer: oY) = 213,
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Profiles & the Wreath Product

Theorem
For any closed classes X and Y,

cexXlY «— oex.

» Allows us to jump between the classes X Y and X.
» The reverse is also true (and more useful):

c¢ XY — oY) ¢Xx.
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Existing Approaches to WFBP

Atkinson, Restricted Permutations and the Wreath Product,
2002.

Theorem
The pattern class | = {1,12,123,1234,...} = Av(p) of
increasing permutations possesses the WFBP.

Proof.
» Any basis element 5 of X ! | can be constructed from a
basis element of X.

» The construction algorithm ensures || is bounded in terms
of the length of basis elements of X.

» Basis elements of X have bounded size since X is finitely
based, so |3| is also of bounded size.

O
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The Construction Algorithm

» Begin by including the pattern of v as we embedded it in 5.



The Construction Algorithm

» Begin by including the pattern of v as we embedded it in 3.

» The aim is to stop this pattern v from dissappearing when
we take the Y -profile of w.



The Construction Algorithm

» Begin by including the pattern of v as we embedded it in 3.

» The aim is to stop this pattern v from dissappearing when
we take the Y -profile of w.

» Look at consecutive pairs of symbols of v inside w.



The Construction Algorithm

» Begin by including the pattern of v as we embedded it in 3.
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we get a basis element of Y separating them.



The Construction Algorithm

v

Begin by including the pattern of v as we embedded it in 5.

v

The aim is to stop this pattern ~ from dissappearing when
we take the Y -profile of w.

v

Look at consecutive pairs of symbols of ~ inside w.

» Add as few symbols as possible for each of these pairs so
we get a basis element of Y separating them.

v

|w| bounded = w = [ is a bounded basis element of X 1 Y.
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Definition

The minimal block of o = s ... s, containing symbols s; and s;

(some i,]) is the smallest interval of o containing both s; and s;.
> Denoted 5.

> o, is unique for each pair (i, j).

Definition
The up extension of o with symbols s;, s; is the position k such
that sy is maximal and i < k < j, written U,(i,]).




Structure from Pairs of Symbols |

Definition
The minimal block of o = s ... s, containing symbols s; and s;
(some i,]) is the smallest interval of o containing both s; and s;.

» Denoted o—i<>j .

> o, is unique for each pair (i, j).
Definition

The down extension of o with symbols s;, s; is the position k
such that sy is minimal and i < k < j, written D, (i, ]).
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Structure from Pairs of Symbols Il

» For a pair of positions i, j of a permutation o, the 8 primary
extensions.

» Use these to take further extensions, the 16 secondary
extensions.

» Then the 32 tertiary extensions, ..., the 2"t2 n-ary
extensions ...

» n-ary extensions may not exist. Must eventually reach the
edges of the minimal block.
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Definition
An n-ary extended block of ¢ is the permutation formed by
taking symbols with positions given by:

» An n-ary extension.

» The (n — 1)-ary “parent” extension.

» The primary “parent” extension, and the original i, j.

Definition
The set of n-ary extended blocks of o on pair (i,]) is £,(i,]; n).
It is a subset of the generalised set of all 2"*2 possible n-ary
extended blocks,

E(n).
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WFBP & Extended Blocks

Theorem (Brignall, 2005)
Let Y = Av(B) be a finitely based closed class, and suppose
there exists some g such that for all ¢ € £(q), we can find a
(€ B suchthat 8 < e. Then Y possesses the WFBP.
Proof.
» The construction algorithm is bounded - can jump at most
g steps before constructing a basis element of Y.
» If no g-ary extension exists then the edges of the minimal
block are reached in g — 1 steps or fewer.
» There exists a basis element of Y within the minimal block,
so include this.
L]
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v

Stack sortable permutations, Av(231). Every ¢ € £(3)

involves 231.

Separable permutations, Av(2413,3142). Every € € £(3)

involves 2413 or 3142.
Av(p) for g € {132,312,213}.

All finite classes.

Intersections Y1 N Yoy, ...
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Where Next?

» Extensions sufficient, but necessary?
» Supported by Av(123) which fails the theorem:

Av(42153): Av(123) is not finitely based.
» What do the extended block sets £(n) look like?
» Links to partially well ordered classes.
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