Finite Basis Results of Wreath Products

R.L.F. Brignall

robertb@mcs.st-and.ac.uk
http://www.rbrignall.org.uk

School of Mathematics and Statistics University of St Andrews

The Burn, Wednesday 11th May, 2005

Introduction

Pattern Avoidance

Involvement and Closed Classes Permutation Structure The Wreath Product Profiles

Approaching the Wreath Finite Basis Property (WFBP)

Existing Approaches A New Approach

Extensions & Extended Blocks

Structure from Pairs of Symbols WFBP & Extended Blocks Consequences

- ▶ Regard a permutation of length n as an ordering of the symbols 1,...,n.
- ▶ A permutation $\tau = t_1 t_2 \dots t_k$ is involved in the permutation $\sigma = s_1 s_2 \dots s_n$ if there exists a subsequence $s_{i_1}, s_{i_2}, \dots, s_{i_k}$ order isomorphic to τ .
- ▶ Write $\tau \leq \sigma$.
- ► Example: The permutation 13524 is involved in 42163857 because of the sequence 16857.
- Involvement forms a partial order on the set of all permutations.

- ▶ Regard a permutation of length n as an ordering of the symbols 1,...,n.
- ▶ A permutation $\tau = t_1 t_2 \dots t_k$ is involved in the permutation $\sigma = s_1 s_2 \dots s_n$ if there exists a subsequence $s_{i_1}, s_{i_2}, \dots, s_{i_k}$ order isomorphic to τ .
- ▶ Write $\tau \leq \sigma$.
- ► Example: The permutation 13524 is involved in 42163857 because of the sequence 16857.
- Involvement forms a partial order on the set of all permutations.

- ▶ Regard a permutation of length n as an ordering of the symbols 1,...,n.
- ▶ A permutation $\tau = t_1 t_2 \dots t_k$ is involved in the permutation $\sigma = s_1 s_2 \dots s_n$ if there exists a subsequence $s_{i_1}, s_{i_2}, \dots, s_{i_k}$ order isomorphic to τ .
- Write $\tau \preccurlyeq \sigma$.
- ► Example: The permutation 13524 is involved in 42163857 because of the sequence 16857.
- Involvement forms a partial order on the set of all permutations.

- ▶ Regard a permutation of length n as an ordering of the symbols 1,...,n.
- ▶ A permutation $\tau = t_1 t_2 \dots t_k$ is involved in the permutation $\sigma = s_1 s_2 \dots s_n$ if there exists a subsequence $s_{i_1}, s_{i_2}, \dots, s_{i_k}$ order isomorphic to τ .
- Write $\tau \preccurlyeq \sigma$.
- ► Example: The permutation 13524 is involved in 42163857 because of the sequence 16857.
- Involvement forms a partial order on the set of all permutations.

- ▶ Regard a permutation of length n as an ordering of the symbols 1,...,n.
- ▶ A permutation $\tau = t_1 t_2 \dots t_k$ is involved in the permutation $\sigma = s_1 s_2 \dots s_n$ if there exists a subsequence $s_{i_1}, s_{i_2}, \dots, s_{i_k}$ order isomorphic to τ .
- Write $\tau \preccurlyeq \sigma$.
- ► Example: The permutation 13524 is involved in 42163857 because of the sequence 16857.
- Involvement forms a partial order on the set of all permutations.

► A set of permutations *X* is closed if

$$\sigma \in X$$
 and $\tau \preccurlyeq \sigma \Rightarrow \tau \in X$.

- Equivalently, a closed class X can be seen to avoid certain permutations.
- ▶ We may describe X in terms of its minimal avoidance set, or basis - the minimal permutations not in X. Write

$$X = Av(B)$$

to mean X has basis B.

► A set of permutations *X* is closed if

$$\sigma \in X$$
 and $\tau \preccurlyeq \sigma \Rightarrow \tau \in X$.

- ► Equivalently, a closed class X can be seen to avoid certain permutations.
- We may describe X in terms of its minimal avoidance set, or basis - the minimal permutations not in X. Write

$$X = Av(B)$$

to mean X has basis B.

► A set of permutations *X* is closed if

$$\sigma \in X$$
 and $\tau \preccurlyeq \sigma \Rightarrow \tau \in X$.

- ► Equivalently, a closed class *X* can be seen to avoid certain permutations.
- We may describe X in terms of its minimal avoidance set, or basis - the minimal permutations not in X. Write

$$X = Av(B)$$

to mean X has basis B.

► A set of permutations *X* is closed if

$$\sigma \in X$$
 and $\tau \preccurlyeq \sigma \Rightarrow \tau \in X$.

- ► Equivalently, a closed class *X* can be seen to avoid certain permutations.
- We may describe X in terms of its minimal avoidance set, or basis - the minimal permutations not in X. Write

$$X = Av(B)$$

to mean X has basis B.

► A set of permutations *X* is closed if

$$\sigma \in X$$
 and $\tau \preccurlyeq \sigma \Rightarrow \tau \in X$.

- ► Equivalently, a closed class *X* can be seen to avoid certain permutations.
- ▶ We may describe X in terms of its minimal avoidance set, or basis - the minimal permutations not in X. Write

$$X = Av(B)$$

to mean X has basis B.

Definition

- ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$.
- A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \dots, s_{i+j}$.
- ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous:

Definition

- ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$.
- A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$.
- ▶ An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous:

Definition

- ▶ A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$.
- ▶ A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$.
- An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous:

Definition

- A sequence is any set of symbols $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ from σ with $i_1 < i_2 < \ldots < i_k$.
- ▶ A segment is a sequence of adjacent symbols, $s_i, s_{i+1}, \ldots, s_{i+j}$.
- An interval or block of σ is a segment $s_i s_{i+1} \dots s_{i+j}$, in which the set of values is contiguous:

Definition

The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations

$$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$

- (i) each α_i is an interval,
- (ii) each α_i is order isomorphic to a permutation of Y,
- (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X.

Definition

The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations

$$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$

- (i) each α_i is an interval,
- (ii) each α_i is order isomorphic to a permutation of Y,
- (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X.

Definition

The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations

$$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$

- (i) each α_i is an interval,
- (ii) each α_i is order isomorphic to a permutation of Y,
- (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X.

Definition

The wreath product of the set of permutations X with the set of permutations Y is the set $X \setminus Y$ of permutations

$$\sigma = \alpha_1 \alpha_2 \dots \alpha_k$$

- (i) each α_i is an interval,
- (ii) each α_i is order isomorphic to a permutation of Y,
- (iii) if for every i we pick a symbol a_i from α_i , then $a_1 a_2 \dots a_k$ is order isomorphic to a permutation in X.

Example

 $X = \{1, 12\}, Y = \{1, 12, 21\}$:

 \triangleright $X \setminus Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}$

Example

 \rightarrow $X = \{1, 12\}, Y = \{1, 12, 21\}:$

 \triangleright $X \setminus Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}$

Example

 \rightarrow $X = \{1, 12\}, Y = \{1, 12, 21\}:$

 \triangleright $X \setminus Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}$

Example

 $\rightarrow X = \{1, 12\}, Y = \{1, 12, 21\}:$

 \triangleright X \setminus Y = {1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143}

Example

 $X = \{1, 12\}, Y = \{1, 12, 21\}$:

 $X \setminus Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}.$

Example

 $\rightarrow X = \{1, 12\}, Y = \{1, 12, 21\}:$

 \triangleright *X* \(\cdot\) Y = \{1, 12, 21, 123, 132, 213, 1234, 1243, 2134, 2143\}.

- ▶ If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X ≀ Y finitely based?
- Not true Atkinson proves A(21) ≀ A(321654) has infinite basis.
- ► Half the problem: which classes Y obey

X finitely based \Rightarrow *X* \wr *Y* finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

- ▶ If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21) ≀ A(321654) has infinite basis.
- ► Half the problem: which classes Y obey

X finitely based \Rightarrow *X* \wr *Y* finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

- ▶ If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21)

 A(321654) has infinite basis.
- ► Half the problem: which classes Y obey
 X finitely based ⇒ X \(\cap Y\) finitely based?
 Y has the Wreath Finite Basis Property (WFBP).

Example

- If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21)

 A(321654) has infinite basis.
- ▶ Half the problem: which classes Y obey

X finitely based \Rightarrow *X* ≀ Y finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

- If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21)

 A(321654) has infinite basis.
- ▶ Half the problem: which classes Y obey

X finitely based \Rightarrow *X* ≀ Y finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

- If X and Y are closed then X \ Y is closed.
- If X and Y are finitely based, is X \ Y finitely based?
- Not true Atkinson proves A(21)

 A(321654) has infinite basis.
- ► Half the problem: which classes Y obey

X finitely based ⇒ X ≀ Y finitely based?

Y has the Wreath Finite Basis Property (WFBP).

Example

Profiles I

Atkinson, in "Restricted Permutations".

Example

The profile of 2346751 is

$$2346751^* = 2431$$

because of the segments 234, 67, 5 and 1.

Profiles I

Atkinson, in "Restricted Permutations".

Example

The profile of 2346751 is

$$2346751^* = 2431$$

because of the segments 234, 67, 5 and 1.

Profiles II

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$

Made unique by first picking σ_1 maximally, then σ_2 , then σ_3 , etc

Profiles II

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

(i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,

(ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$

Made unique by first picking σ_1 maximally, then σ_2 , then σ_3 , etc

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$.

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$.

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$.

Definition

For any closed class Y, the permutation σ has Y-profile

$$\sigma^{(Y)} = s_1 s_2 \dots s_m$$

if σ can be partitioned into segments

$$\sigma = \sigma_1 \sigma_2 \dots \sigma_m$$

subject to

- (i) each σ_i is a non-empty interval, order isomorphic to a permutation from Y,
- (ii) $\sigma_i < \sigma_j$ if and only if $s_i < s_j$.

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let $Y = \mathcal{A}(231)$, the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Example

Let Y = A(231), the stack sortable permutations.

▶ What is the Y-profile of $\sigma = 24351687$?

Theorem

$$\sigma \in X \wr Y \iff \sigma^{(Y)} \in X.$$

- \triangleright Allows us to jump between the classes $X \setminus Y$ and X.
- ► The reverse is also true (and more useful):

$$\sigma \notin X \wr Y \iff \sigma^{(Y)} \notin X.$$

Theorem

$$\sigma \in X \wr Y \iff \sigma^{(Y)} \in X.$$

- ightharpoonup Allows us to jump between the classes $X \setminus Y$ and X.
- ► The reverse is also true (and more useful):

$$\sigma \notin X \wr Y \iff \sigma^{(Y)} \notin X.$$

Theorem

$$\sigma \in X \wr Y \iff \sigma^{(Y)} \in X.$$

- Allows us to jump between the classes X ≀ Y and X.
- ► The reverse is also true (and more useful):

$$\sigma \notin X \wr Y \iff \sigma^{(Y)} \notin X.$$

Theorem

$$\sigma \in X \wr Y \iff \sigma^{(Y)} \in X.$$

- Allows us to jump between the classes X ≀ Y and X.
- ► The reverse is also true (and more useful):

$$\sigma \notin X \wr Y \iff \sigma^{(Y)} \notin X.$$

Atkinson, Restricted Permutations and the Wreath Product, 2002.

Theorem

The pattern class $I = \{1, 12, 123, 1234, ...\} = Av(\beta)$ of increasing permutations possesses the WFBP.

- Any basis element β of X \(\chi\) I can be constructed from a basis element of X.
- ▶ The construction algorithm ensures $|\beta|$ is bounded in terms of the length of basis elements of X.
- ▶ Basis elements of X have bounded size since X is finitely based, so |β| is also of bounded size.

Atkinson, Restricted Permutations and the Wreath Product, 2002.

Theorem

The pattern class $I = \{1, 12, 123, 1234, \ldots\} = \text{Av}(\beta)$ of increasing permutations possesses the WFBP.

- Any basis element β of X \(\chi\) I can be constructed from a basis element of X.
- ▶ The construction algorithm ensures $|\beta|$ is bounded in terms of the length of basis elements of X.
- ▶ Basis elements of X have bounded size since X is finitely based, so $|\beta|$ is also of bounded size.

Atkinson, Restricted Permutations and the Wreath Product, 2002.

Theorem

The pattern class $I = \{1, 12, 123, 1234, \ldots\} = \text{Av}(\beta)$ of increasing permutations possesses the WFBP.

- Any basis element β of X ≀ I can be constructed from a basis element of X.
- ▶ The construction algorithm ensures $|\beta|$ is bounded in terms of the length of basis elements of X.
- ▶ Basis elements of X have bounded size since X is finitely based, so $|\beta|$ is also of bounded size.

Atkinson, Restricted Permutations and the Wreath Product, 2002.

Theorem

The pattern class $I = \{1, 12, 123, 1234, \ldots\} = \text{Av}(\beta)$ of increasing permutations possesses the WFBP.

- Any basis element β of X ≀ I can be constructed from a basis element of X.
- ▶ The construction algorithm ensures $|\beta|$ is bounded in terms of the length of basis elements of X.
- ▶ Basis elements of X have bounded size since X is finitely based, so $|\beta|$ is also of bounded size.

Atkinson, Restricted Permutations and the Wreath Product, 2002.

Theorem

The pattern class $I = \{1, 12, 123, 1234, \ldots\} = \text{Av}(\beta)$ of increasing permutations possesses the WFBP.

- Any basis element β of X ≀ I can be constructed from a basis element of X.
- ▶ The construction algorithm ensures $|\beta|$ is bounded in terms of the length of basis elements of X.
- ▶ Basis elements of X have bounded size since X is finitely based, so $|\beta|$ is also of bounded size.

▶ Basis element β of $X \wr Y$.

▶ Take the Y-profile ($\beta^{(Y)} = 51423$).

▶ Find basis element $\gamma = 4132$ of X inside $\beta^{(Y)}$.

▶ Embed γ into β .

▶ Construct new permutation ω inside β containing γ .

• Y-profile of ω still contains γ .

- ▶ Begin by including the pattern of γ as we embedded it in β .
- ▶ The aim is to stop this pattern γ from dissappearing when we take the *Y*-profile of ω .
- ▶ Look at consecutive pairs of symbols of γ inside ω .
- ▶ Add as few symbols as possible for each of these pairs so we get a basis element of *Y* separating them.
- ▶ $|\omega|$ bounded $\Rightarrow \omega = \beta$ is a bounded basis element of $X \wr Y$.

- ▶ Begin by including the pattern of γ as we embedded it in β .
- ▶ The aim is to stop this pattern γ from dissappearing when we take the Y-profile of ω .
- ▶ Look at consecutive pairs of symbols of γ inside ω .
- ▶ Add as few symbols as possible for each of these pairs so we get a basis element of *Y* separating them.
- ▶ $|\omega|$ bounded $\Rightarrow \omega = \beta$ is a bounded basis element of $X \wr Y$.

- ▶ Begin by including the pattern of γ as we embedded it in β .
- ▶ The aim is to stop this pattern γ from dissappearing when we take the Y-profile of ω .
- ▶ Look at consecutive pairs of symbols of γ inside ω .
- ▶ Add as few symbols as possible for each of these pairs so we get a basis element of *Y* separating them.
- ▶ $|\omega|$ bounded $\Rightarrow \omega = \beta$ is a bounded basis element of $X \wr Y$.

- ▶ Begin by including the pattern of γ as we embedded it in β .
- ▶ The aim is to stop this pattern γ from dissappearing when we take the Y-profile of ω .
- ▶ Look at consecutive pairs of symbols of γ inside ω .
- ► Add as few symbols as possible for each of these pairs so we get a basis element of Y separating them.
- ▶ $|\omega|$ bounded $\Rightarrow \omega = \beta$ is a bounded basis element of $X \wr Y$.

- ▶ Begin by including the pattern of γ as we embedded it in β .
- ▶ The aim is to stop this pattern γ from dissappearing when we take the Y-profile of ω .
- ▶ Look at consecutive pairs of symbols of γ inside ω .
- Add as few symbols as possible for each of these pairs so we get a basis element of Y separating them.
- ▶ $|\omega|$ bounded $\Rightarrow \omega = \beta$ is a bounded basis element of $X \wr Y$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\diamondsuit}$.
- $ightharpoonup \sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_i < s_k < s_j$, written $L_{\sigma}(i,j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\Diamond}$.
- $ightharpoonup \sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_j < s_k < s_j$, written $L_{\sigma}(i,j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\Diamond}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_j < s_k < s_j$, written $L_{\sigma}(i,j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\Diamond}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The left extension of σ with symbols s_i , s_j is the minimal position k such that $s_i < s_k < s_j$, or $s_j < s_k < s_i$, written $L_{\sigma}(i,j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\Diamond}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The right extension of σ with symbols s_i , s_j is the maximal position k such that $s_i < s_k < s_j$, or $s_i < s_k < s_i$, written $R_{\sigma}(i, j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\diamondsuit}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The up extension of σ with symbols s_i, s_j is the position k such that s_k is maximal and i < k < j, written $U_{\sigma}(i, j)$.

Definition

The minimal block of $\sigma = s_1 \dots s_n$ containing symbols s_i and s_j (some i, j) is the smallest interval of σ containing both s_i and s_j .

- ▶ Denoted $\sigma_{i,j}^{\diamondsuit}$.
- $\sigma_{i,j}^{\Diamond}$ is unique for each pair (i,j).

Definition

The down extension of σ with symbols s_i, s_j is the position k such that s_k is minimal and i < k < j, written $D_{\sigma}(i, j)$.

► For a pair of positions i, j of a permutation σ , the 8 primary extensions.

► For a pair of positions i, j of a permutation σ , the 8 primary extensions.

- ▶ For a pair of positions i, j of a permutation σ , the 8 primary extensions.
- Use these to take further extensions, the 16 secondary extensions.

- ► For a pair of positions i, j of a permutation σ , the 8 primary extensions.
- Use these to take further extensions, the 16 secondary extensions.

- ▶ For a pair of positions i, j of a permutation σ , the 8 primary extensions.
- Use these to take further extensions, the 16 secondary extensions.
- ► Then the 32 tertiary extensions, ..., the 2^{n+2} *n*-ary extensions ...

- ▶ For a pair of positions i, j of a permutation σ , the 8 primary extensions.
- Use these to take further extensions, the 16 secondary extensions.
- ► Then the 32 tertiary extensions, ..., the 2^{n+2} *n*-ary extensions ...
- n-ary extensions may not exist. Must eventually reach the edges of the minimal block.

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- ► An *n*-ary extension.
- ► The (n-1)-ary "parent" extension.

▶ The primary "parent" extension, and the original i, j.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks,

$$\mathcal{E}(n)$$
.

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

▶ The primary "parent" extension, and the original i, j.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks,

$$\mathcal{E}(n)$$

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

-

▶ The primary "parent" extension, and the original i, j.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks.

 $\mathcal{E}(n)$

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

:

▶ The primary "parent" extension, and the original *i*, *j*.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks.

 $\mathcal{E}(n)$.

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

:

▶ The primary "parent" extension, and the original *i*, *j*.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks,

$$\mathcal{E}(n)$$

Definition

An *n*-ary extended block of σ is the permutation formed by taking symbols with positions given by:

- An n-ary extension.
- ▶ The (n-1)-ary "parent" extension.

:

▶ The primary "parent" extension, and the original i, j.

Definition

The set of *n*-ary extended blocks of σ on pair (i,j) is $\mathcal{E}_{\sigma}(i,j;n)$. It is a subset of the generalised set of all 2^{n+2} possible *n*-ary extended blocks,

$$\mathcal{E}(n)$$
.

Theorem (Brignall, 2005)

- ► The construction algorithm is bounded can jump at most
- ▶ If no g-ary extension exists then the edges of the minimal
- ► There exists a basis element of Y within the minimal block,

Theorem (Brignall, 2005)

Let Y = Av(B) be a finitely based closed class, and suppose there exists some q such that for all $\varepsilon \in \mathcal{E}(q)$, we can find a $\beta \in B$ such that $\beta \leqslant \varepsilon$. Then Y possesses the WFBP.

Proof

- ► The construction algorithm is bounded can jump at most *q* steps before constructing a basis element of *Y*.
- If no *q*-ary extension exists then the edges of the minimal block are reached in *q* − 1 steps or fewer.
- ► There exists a basis element of Y within the minimal block, so include this.

Theorem (Brignall, 2005)

Let Y = Av(B) be a finitely based closed class, and suppose there exists some q such that for all $\varepsilon \in \mathcal{E}(q)$, we can find a $\beta \in B$ such that $\beta \leqslant \varepsilon$. Then Y possesses the WFBP. Proof.

- ► The construction algorithm is bounded can jump at most *q* steps before constructing a basis element of *Y*.
- If no *q*-ary extension exists then the edges of the minimal block are reached in *q* − 1 steps or fewer.
- ► There exists a basis element of Y within the minimal block, so include this.

Theorem (Brignall, 2005)

Let Y = Av(B) be a finitely based closed class, and suppose there exists some g such that for all $\varepsilon \in \mathcal{E}(g)$, we can find a $\beta \in B$ such that $\beta \leq \varepsilon$. Then Y possesses the WFBP. Proof.

- The construction algorithm is bounded can jump at most q steps before constructing a basis element of Y.
- ▶ If no *q*-ary extension exists then the edges of the minimal block are reached in q-1 steps or fewer.
- ► There exists a basis element of Y within the minimal block,

Theorem (Brignall, 2005)

Let Y = Av(B) be a finitely based closed class, and suppose there exists some g such that for all $\varepsilon \in \mathcal{E}(g)$, we can find a $\beta \in B$ such that $\beta \leq \varepsilon$. Then Y possesses the WFBP. Proof.

- The construction algorithm is bounded can jump at most q steps before constructing a basis element of Y.
- ▶ If no *q*-ary extension exists then the edges of the minimal block are reached in q-1 steps or fewer.
- There exists a basis element of Y within the minimal block. so include this.

- ▶ Separable permutations, Av(2413, 3142). Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $Av(\beta)$ for $\beta \in \{132, 312, 213\}.$
- ► All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- ▶ Separable permutations, Av(2413, 3142). Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $Av(\beta)$ for $\beta \in \{132, 312, 213\}$.
- All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- ▶ Separable permutations, Av(2413, 3142). Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $Av(\beta)$ for $\beta \in \{132, 312, 213\}.$
- ► All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- ▶ Separable permutations, Av(2413, 3142). Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $Av(\beta)$ for $\beta \in \{132, 312, 213\}.$
- ► All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- ▶ Separable permutations, Av(2413, 3142). Every $\varepsilon \in \mathcal{E}(3)$ involves 2413 or 3142.
- $Av(\beta)$ for $\beta \in \{132, 312, 213\}.$
- All finite classes.
- ▶ Intersections $Y_1 \cap Y_2, ...$

- Extensions sufficient, but necessary?
- ► Supported by Av(123) which fails the theorem:

Av(42153) ¿ Av(123) is not finitely based.

- ▶ What do the extended block sets $\mathcal{E}(n)$ look like?
- Links to partially well ordered classes.

- Extensions sufficient, but necessary?
- Supported by Av(123) which fails the theorem:

Av(42153) ≀ Av(123) is not finitely based.

- ▶ What do the extended block sets $\mathcal{E}(n)$ look like?
- Links to partially well ordered classes.

- Extensions sufficient, but necessary?
- Supported by Av(123) which fails the theorem:

Av(42153) ≀ Av(123) is not finitely based.

- ▶ What do the extended block sets $\mathcal{E}(n)$ look like?
- Links to partially well ordered classes.

- Extensions sufficient, but necessary?
- Supported by Av(123) which fails the theorem:

 $Av(42153) \wr Av(123)$ is not finitely based.

- ▶ What do the extended block sets $\mathcal{E}(n)$ look like?
- Links to partially well ordered classes.

- Extensions sufficient, but necessary?
- Supported by Av(123) which fails the theorem:

 $Av(42153) \wr Av(123)$ is not finitely based.

- ▶ What do the extended block sets $\mathcal{E}(n)$ look like?
- Links to partially well ordered classes.