Infinite Antichains in Permutation Classes

Robert Brignall

The Open University

Tuesday 8th February, 2011

Outline

Introduction

- Permutation classes
- Enumeration
- Antichains

2 Building antichains

- Grid classes
- Monotone grids
- General grids

3 Theory of antichains

- Intuitive structure
- Grid pin sequences
- Evidence for niceness

Outline

Introduction

- Permutation classes
- Enumeration
- Antichains

Building antichains

- Grid classes
- Monotone grids
- General grids

Theory of antichains

- Intuitive structure
- Grid pin sequences
- Evidence for niceness

- Permutation of length n: an ordering on the symbols 1, ..., n.
- For example: $\pi = 15482763$.
- Graphical viewpoint: plot the points $(i, \pi(i))$.

Robert Brignall (OU)

• 231 is not stack-sortable.

- 231 is not stack-sortable.
- In general: can't sort any permutation with a subsequence abc such that c < a < b. (abc forms a 231 "pattern".)

• A permutation $\tau = \tau(1) \cdots \tau(k)$ is contained in the permutation $\sigma = \sigma(1)\sigma(2) \cdots \sigma(n)$ if there exists a subsequence $\sigma(i_1)\sigma(i_2) \cdots \sigma(i_k)$ order isomorphic to τ .

- Containment forms a partial order on the set of all permutations.
- Downwards-closed sets in this partial order form permutation classes. i.e. $\pi \in C$ and $\sigma \leq \pi$ implies $\sigma \in C$.

- Containment forms a partial order on the set of all permutations.
- Downwards-closed sets in this partial order form permutation classes. i.e. $\pi \in C$ and $\sigma \leq \pi$ implies $\sigma \in C$.
- A permutation class C can be seen to avoid certain permutations. Write $C = Av(B) = \{\pi : \beta \leq \pi \text{ for all } \beta \in B\}.$
- The minimal avoidance set is the basis. It is unique but need not be finite.
- E.g. the stack-sortable permutations are Av(231).
- Graph theoretic analogue: hereditary properties of graphs (e.g. triangle-free graphs, planar graphs, ...).

• Av(21) = {1, 12, 123, 1234, \ldots }, the increasing permutations.

• $\mathsf{Av}(12) = \{1, 21, 321, 4321, \ldots\},$ the decreasing permutations.

•
$$\oplus 21 = Av(321, 312, 231) = \{1, 12, 21, 123, 132, 213, \ldots\}.$$

• $\ominus 12 = Av(123, 213, 132) = \{1, 12, 21, 231, 312, 321, \ldots\}.$

- C_n permutations in C of length n.
- $\sum |C_n| x^n$ is the generating function.

Example

The generating function of $\mathcal{C}=\mathsf{Av}(12)$ is:

$$1 + x + x^2 + x^3 + \cdots = \frac{1}{1 - x}$$

• Stack sortable permutations Av(231) enumerated by the Catalan numbers. Generating function:

$$f(x) = \frac{1 - \sqrt{1 - 4x}}{2x} = 1 + x + 2x^2 + 5x^3 + 14x^4 + \dots$$

- Using the Robinson-Schensted-Knuth correspondence with Young Tableaux, $|Av(321)|_n = |Av(231)|_n$.
- Despite being equinumerous, these two classes are very different: Av(321) contains infinite antichains and hence has uncountably many subclasses, while Av(231) does not.

•
$$C_n$$
 – permutations in C of length n .

Theorem (Marcus and Tardos, 2004)

For every permutation class C other than the class of all permutations, there exists a constant K such that

$$\limsup_{n\to\infty}\sqrt[n]{|\mathcal{C}_n|}\leq K.$$

• Big open question: does the growth rate, $\lim_{n\to\infty}\sqrt[n]{|\mathcal{C}_n|}$, always exist?

- Growth rate of C is $\lim_{n\to\infty} \sqrt[n]{|C_n|}$ (if it exists).
- Below $\kappa \approx 2.20557$, growth rates exist and can be characterised [Vatter, 2007+]:

- κ is the lowest growth rate where we encounter infinite antichains, and hence uncountably many permutation classes.
- The proof of this uses grid classes (more on this later).

Example (Increasing Oscillating Antichain)

• N.B. These permutations avoid 321.

Example (Increasing Oscillating Antichain) • Anchor: bottom copies of 4123 must match up.

Example (Increasing Oscillating Antichain)

• Each point is matched in turn.

• Each point is matched in turn.

Example (Increasing Oscillating Antichain) Each point is matched in turn. ٩

Example (Increasing Oscillating Antichain) Last pair cannot be embedded. •

- At $\kappa \approx 2.20557$, we find permutation classes that contain the increasing oscillating antichain.
- Above λ ≈ 2.48188, every real number is the growth rate of a permutation class [Vatter, 2010]. The proof builds classes based on this antichain.

• From order to chaos: What lies between κ and λ ?

No infinite antichains.

- Words over a finite alphabet [Higman, 1952].
- Trees ordered by topological minors [Kruskal 1960; Nash-Williams, 1963]
- Graphs closed under minors [Robertson and Seymour, 1983-2004].

Infinite antichains.

- Graphs closed under induced subgraphs (or merely subgraphs). e.g. C₃, C₄, C₅,...
- Permutations closed under containment.
- Tournaments, digraphs, ...
- There exist infinite antichains in the permutation poset, but not every class has then.
- A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a permutation class given by a finite basis is pwo?

- To prove pwo Higman's theorem is useful.
- To prove not pwo find an antichain.

- There exist infinite antichains in the permutation poset, but not every class has then.
- A permutation class is partially well-ordered (pwo) if it contains no infinite antichains.

Question

Can we decide whether a hereditary property given by a finite basis is wqo?

- To prove pwo Higman's theorem is useful.
- To prove not pwo find an antichain.
- Other structures: well quasi-order, not pwo, but same idea.

Outline

Introduction

- Permutation classes
- Enumeration
- Antichains

2 Building antichains

- Grid classes
- Monotone grids
- General grids

Theory of antichains

- Intuitive structure
- Grid pin sequences
- Evidence for niceness

Grid Classes

- Hot topic: Crucial tool to study the structure of classes.
- Matrix $\mathcal M$ whose entries are (infinite) permutation classes.
- Grid(\mathcal{M}) the grid class of \mathcal{M} : all permutations which can be "gridded" so each cell satisfies constraints of \mathcal{M} .

Example

• Let
$$\mathcal{M} = \begin{pmatrix} Av(21) & Av(231) & \emptyset \\ Av(123) & \emptyset & Av(12) \end{pmatrix}$$
.

Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

Monotone Grid Classes

- Special case: all cells of \mathcal{M} are Av(21) or Av(12).
- Rewrite \mathcal{M} as a matrix with entries in $\{0, 1, -1\}$.

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

The Graph of a Matrix

• Graph of a matrix, $G(\mathcal{M})$, formed by connecting together all non-zero entries that share a row or column and are not "separated" by any other nonzero entry.

Theorem (Murphy and Vatter, 2003)

The monotone grid class $\operatorname{Grid}(\mathcal{M})$ is pwo if and only if $G(\mathcal{M})$ is a forest, *i.e.* $G(\mathcal{M})$ contains no cycles.

Question

When is a class C (a subset of) a monotone grid class?

Answer [Huczynska & Vatter]

A class C is monotone griddable if and only if it contains neither the classes $\oplus 21$ nor $\oplus 12$.

Beyond monotone

- What can we say about infinite antichains for general grid classes?
- Next stage: allow cells labelled by $\oplus 21$ and $\ominus 12$.

Example						
	(Av(21)	0	0	Av(21)	
		0	⊖12	0	0	
		⊕21	0	Av(12)	0	
		0	0	0	⊕21)	

Beyond monotone

- What can we say about infinite antichains for general grid classes?
- Next stage: allow cells labelled by $\oplus 21$ and $\ominus 12$.

 Can assume graph is a forest, but now the number of non-monotone-griddable cells in each component matters.

Robert Brignall (OU)

Permutation Antichains

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

Proof.

• WLOG graph is a path connecting two bad cells.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.
A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.

A grid class whose graph has a component containing two or more non-monotone-griddable cells is not pwo.

- WLOG graph is a path connecting two bad cells.
- Permute rows and columns.
- Flip rows and columns.
- Build antichain with grid pin sequences.
- Flip and permute back.
- Still have an antichain.

- What if a component contains exactly one non-monotone griddable cell?
- First: Add the (fairly strong) condition that the "bad" cell contains only finitely many simple permutations.
- Now can describe the class in a way which is amenable to Higman's Theorem.

Let \mathcal{M} be a gridding matrix for which each component is a forest and contains at most one non-monotone cell. If every non-monotone cell contains only finitely many simple permutations, then $\operatorname{Grid}(\mathcal{M})$ is pwo.

• One cell containing arbitrarily long increasing oscillations next to a monotone cell is bad...

• Mind the gap: between finite simples and infinite oscillations, not (yet) known.

Outline

Introductio

Permutation classes

Enumeration

Antichains

Building antichains

- Grid classes
- Monotone grids
- General grids

3 Theory of antichains

- Intuitive structure
- Grid pin sequences
- Evidence for niceness

- Grand aim: a structure theory for infinite antichains, to answer (or explain why we can't answer) questions about partial well-order.
- In this talk: restrict attention to permutations, but this theory is really for general combinatorial structures.

Intuitive structure of antichains

- Take an infinite sequence of points in the plane, p_1, p_2, \ldots , each following on "uniquely" from its predecessors.
- Antichain elements: take a finite sequence p₁,..., p_n of these points, and blow up the first and last points.
- Alternative to blowing up: tie the ends together.

Question

Is this intuitive description of structure correct?

Robert Brignall (OU)

Permutation Antichains

8th February 2011 29 / 36

Antichains can be more complicated, but we don't care:

• An infinite antichain A is fundamental if its closure,

$$\mathsf{Cl}(\mathsf{A}) = \{\pi : \pi \leq \alpha \text{ for some } \alpha \in \mathsf{A}\},$$

contains no infinite antichains other then subsets of A.

- Fundamental really means no extraneous points.
- Related concepts: minimal, maximal, canonical...

Proposition (Essentially due to Nash-Williams, 1963)

Every non-pwo permutation class contains a fundamental infinite antichain.

Bigger caveat: Maybe we just haven't found any ugly antichains yet.

- Local separation: p_{i+1} separates p_i from p_{i-1} .
- Local externality: p_{i+1} lies outside $\text{Rect}(p_{i-1}, p_i), j = 1, \dots, i$.
- Row-column agreement: p_{i+1} must be placed in the same row or column as p_i.
- Non-interaction: p_{i+1} could not have been used as a pin earlier in the sequence.

Example

- Local separation: p_{i+1} separates p_i from p_{i-1} .
- Local externality: p_{i+1} lies outside $\text{Rect}(p_{j-1}, p_j)$, j = 1, ..., i.
- Row-column agreement: p_{i+1} must be placed in the same row or column as p_i.
- Non-interaction: p_{i+1} could not have been used as a pin earlier in the sequence.

Example

Robert Brignall (OU)

8th February 2011 31 / 36

- Local separation: p_{i+1} separates p_i from p_{i-1} .
- Local externality: p_{i+1} lies outside $\text{Rect}(p_{i-1}, p_i), j = 1, \dots, i$.
- Row-column agreement: p_{i+1} must be placed in the same row or column as p_i .
- Non-interaction: p_{i+1} could not have been used as a pin earlier in the sequence.

- Local separation: p_{i+1} separates p_i from p_{i-1} .
- Local externality: p_{i+1} lies outside $\text{Rect}(p_{j-1}, p_j)$, j = 1, ..., i.
- Row-column agreement: p_{i+1} must be placed in the same row or column as p_i.
- Non-interaction: p_{i+1} could not have been used as a pin earlier in the sequence.

- Local separation: p_{i+1} separates p_i from p_{i-1} .
- Local externality: p_{i+1} lies outside $\text{Rect}(p_{j-1}, p_j)$, j = 1, ..., i.
- Row-column agreement: p_{i+1} must be placed in the same row or column as p_i.
- Non-interaction: p_{i+1} could not have been used as a pin earlier in the sequence.

- Local separation: p_{i+1} separates p_i from p_{i-1} .
- Local externality: p_{i+1} lies outside $\text{Rect}(p_{j-1}, p_j)$, j = 1, ..., i.
- Row-column agreement: p_{i+1} must be placed in the same row or column as p_i.
- Non-interaction: p_{i+1} could not have been used as a pin earlier in the sequence.

- Local separation: p_{i+1} separates p_i from p_{i-1} .
- Local externality: p_{i+1} lies outside $\text{Rect}(p_{j-1}, p_j)$, j = 1, ..., i.
- Row-column agreement: p_{i+1} must be placed in the same row or column as p_i.
- Non-interaction: p_{i+1} could not have been used as a pin earlier in the sequence.

- Local separation: p_{i+1} separates p_i from p_{i-1} .
- Local externality: p_{i+1} lies outside $\text{Rect}(p_{j-1}, p_j)$, j = 1, ..., i.
- Row-column agreement: p_{i+1} must be placed in the same row or column as p_i.
- Non-interaction: p_{i+1} could not have been used as a pin earlier in the sequence.

- Local separation: p_{i+1} separates p_i from p_{i-1} .
- Local externality: p_{i+1} lies outside $\text{Rect}(p_{j-1}, p_j)$, j = 1, ..., i.
- Row-column agreement: p_{i+1} must be placed in the same row or column as p_i.
- Non-interaction: p_{i+1} could not have been used as a pin earlier in the sequence.

- Grid pin sequences transfer to other combinatorial structures.
- Translation resolves a conjecture in graph theory:

Conjecture (Ding, 1992)

The class of permutation graphs that do not contain (as an induced subgraph) a path or the complement of a path on $n \ge 5$ vertices is wqo.

Counterexample

- ${\sf Permutations} \ \ \rightarrow \ \ {\sf Permutation} \ {\sf graphs}$
- Increasing oscillations (no blow-up) \rightarrow Paths
 - Decreasing oscillations \rightarrow Complement of paths

The "Widdershins" antichain (see next slide) lies in this class.

Theorem (Cherlin and Latka, 2000)

For each natural number k, there is a finite set Λ_k of fundamental antichains with the property that a class avoiding exactly k permutations is pwo if and only if its intersection with each antichain in Λ_k is finite.

• Λ_1 consists of the increasing oscillating, Widdershins and V antichains [Atkinson, Murphy and Ruškuc, 2002].

Λ₂ is unknown...

Colour your permutations

- Permutations with $n \ge 2$ colours: no blow up required.
- *n*-pwo: permutation class contains no *n*-coloured infinite antichains.

Conjecture (Pouzet, 1972)

A permutation class C is 2-pwo if and only if C is n-pwo for all $n \ge 2$.

(N.B. This is really a conjecture about graphs.)

- Conjectures describing the "niceness" of antichains are abundant. Proofs are scarcer.
- Permutations: what does antichain structure mean for permutation class structure?
- Could a better understanding of infinite fundamental antichains fill the gap between existing antichain constructions and techniques for proving pwo?

Thanks!