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Setting the Scene

@ Permutation of length n: an ordering on the symbols 1,..., n.
@ For example: 7T = 15482763.
@ Graphical viewpoint: plot the points (i, 7t(/)).
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

@ 231 is not stack-sortable.
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Stack Sorting

@ Knuth (1969): what permutations can be sorted through a stack?

@ 231 is not stack-sortable.

@ In general: can’t sort any permutation with a subsequence abc such
that ¢ < a < b. (abc forms a 231 “pattern”.)
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Containment

@ A permutation T = T(1) - - - (k) is contained in the permutation
o =0(1)c(2)---c(n) if there exists a subsequence
o(i)o(ip) -+ o(ix) order isomorphic to T.

13524 < 42163857
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Permutation Classes

@ Containment forms a partial order on the set of all permutations.

@ Downwards-closed sets in this partial order form permutation classes.
i.e. 1€ Cand o < 7rimplies o € C.
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Permutation Classes

@ Containment forms a partial order on the set of all permutations.

@ Downwards-closed sets in this partial order form permutation classes.
i.e. 1€ Cand o < 7rimplies o € C.

@ A permutation class C can be seen to avoid certain permutations.
Write C = Av(B) = {rt: p £ mforall B € B}.

@ The minimal avoidance set is the basis. It is unique but need not be
finite.

o E.g. the stack-sortable permutations are Av(231).

@ Graph theoretic analogue: hereditary properties of graphs (e.g.
triangle-free graphs, planar graphs, ...).
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Easy Examples

o Av(21) = {1,12,123,1234, ...}, the increasing permutations.
o Av(12) = {1,21,321,4321,...}, the decreasing permutations.

Typical Elements
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Easy Examples

o @21 = Av(321,312,231) = {1,12,21,123,132,213,...}.
o ©12 = Av(123,213,132) = {1,12,21,231,312,321,...}.

Typical Elements
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Exact Enumeration

o C, — permutations in C of length n.
@ ) "|Cy|x" is the generating function.

The generating function of C = Av(12) is:

l+x+x2+x3+- =
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Av(321) vs Av(231)

@ Stack sortable permutations Av(231) enumerated by the Catalan
numbers. Generating function:
1-Vi—4
f(x) = 27)( =14 x+ 22 +5x3 4 14x* + ...
X
@ Using the Robinson-Schensted-Knuth correspondence with Young
Tableaux, |Av(321)], = |Av(231)],.
@ Despite being equinumerous, these two classes are very different:
Av(321) contains infinite antichains and hence has uncountably many
subclasses, while Av(231) does not.
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Asymptotic Enumeration

o C, — permutations in C of length n.

Theorem (Marcus and Tardos, 2004)

For every permutation class C other than the class of all permutations,
there exists a constant K such that

@ Big open question: does the growth rate, lim {/|C,|, always exist?
n—o0
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Small Growth Rates

@ Growth rate of C is Ii_)m 0/|Cn| (if it exists).
n—oo

@ Below x &~ 2.20557, growth rates exist and can be characterised
[Vatter, 2007+]:

0 1 ¢ 2 K
—--— | N AT IR i .

@ « is the lowest growth rate where we encounter infinite antichains, and
hence uncountably many permutation classes.

@ The proof of this uses grid classes (more on this later).
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

o

1
Py
@

@ N.B. These permutations avoid 321.
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

o

1
Py
@

@ Anchor: bottom copies of 4123 must match up.
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

o

1
Py
@

@ Each point is matched in turn.
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

o

@ Each point is matched in turn.
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Infinite Antichains

o (Infinite) set of pairwise incomparable permutations.

Example (Increasing Oscillating Antichain)

o

@ Last pair cannot be embedded.
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Increasing Oscillations are Important

@ At x =~ 2.20557, we find permutation classes that contain the
increasing oscillating antichain.

@ Above A & 2.48188, every real number is the growth rate of a
permutation class [Vatter, 2010].
The proof builds classes based on this antichain.

@ From order to chaos: What lies between x and A?
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When are there antichains?

No infinite antichains.
@ Words over a finite alphabet [Higman, 1952].

@ Trees ordered by topological minors [Kruskal 1960; Nash-Williams,
1963]

@ Graphs closed under minors [Robertson and Seymour, 1983—2004].

Infinite antichains.

o Graphs closed under induced subgraphs (or merely subgraphs). e.g.
G, G, G, ...

@ Permutations closed under containment.

@ Tournaments, digraphs, ...
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Partial Well-Order

@ There exist infinite antichains in the permutation poset, but not every
class has then.

@ A permutation class is partially well-ordered (pwo) if it contains no
infinite antichains.

Can we decide whether a permutation class given by a finite basis is pwo?

@ To prove pwo — Higman'’s theorem is useful.

@ To prove not pwo — find an antichain.
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Partial Well-Order

@ There exist infinite antichains in the permutation poset, but not every
class has then.

@ A permutation class is partially well-ordered (pwo) if it contains no
infinite antichains.

Can we decide whether a hereditary property given by a finite basis is wqo?

@ To prove pwo — Higman'’s theorem is useful.
@ To prove not pwo — find an antichain.

@ Other structures: well quasi-order, not pwo, but same idea.
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Outline

© Building antichains
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Grid Classes

@ Hot topic: Crucial tool to study the structure of classes.
@ Matrix M whose entries are (infinite) permutation classes.

@ Grid(M) the grid class of M: all permutations which can be
“gridded” so each cell satisfies constraints of M.

Av(21) Av(231 @
O leil= ( Av((123)) (® ) Av(12) >
A T
e
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Monotone Grid Classes

@ Special case: all cells of M are Av(21) or Av(12).

@ Rewrite M as a matrix with entries in {0,1, —1}.

1 1 0 . °

M=| -1 0 1 '. .
0 1 —1 . .

"IHHHH\HHHH.H
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Monotone Grid Classes

@ Special case: all cells of M are Av(21) or Av(12).

@ Rewrite M as a matrix with entries in {0,1, —1}.

e I
<L
1 1 0 0 o
M= -1 0 1 . | .
0 1 -1 * le
S
Lo
ol €
—I\\\\\\\‘\\\\\‘\\\\\.\\
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The Graph of a Matrix

@ Graph of a matrix, G(M), formed by connecting together all non-zero
entries that share a row or column and are not “separated” by any
other nonzero entry.

C 0 0 D
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The Graph of a Matrix

@ Graph of a matrix, G(M), formed by connecting together all non-zero
entries that share a row or column and are not “separated” by any
other nonzero entry.
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Monotone Grids and Partial Well-Order

Theorem (Murphy and Vatter, 2003)

The monotone grid class Grid(M) is pwo if and only if G(M) is a forest,
i.e. G(M) contains no cycles.

v

(=) Construct infinite antichains that “walk” around a cycle.
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When does that apply?
When is a class C (a subset of) a monotone grid class?

Answer [Huczynska & Vatter]

A class C is monotone griddable if and only if it contains neither the classes
@21 nor S12.
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Beyond monotone

@ What can we say about infinite antichains for general grid classes?
@ Next stage: allow cells labelled by ©21 and ©12.

Av(21) 0 0 Av(21)

Robert Brignall (OU) Permutation Antichains 8th February 2011 23 / 36



Beyond monotone

@ What can we say about infinite antichains for general grid classes?
@ Next stage: allow cells labelled by ©21 and ©12.

Av(21) Av(21)

©12

®21 ——— Av(12)

®21

@ Can assume graph is a forest, but now the number of
non-monotone-griddable cells in each component matters.
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

Proof.

@ WLOG graph is a path connecting two
) L bad cells.
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Theorem (B.)

A grid class whose graph has a component containing two or more
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

Proof.

D D @ WLOG graph is a path connecting two
D Q bad cells.

@ Permute rows and columns.

@ Flip rows and columns.

D D @ Build antichain with grid pin sequences.
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

Proof.

D D @ WLOG graph is a path connecting two
bad cells.

@ Permute rows and columns.

@ Flip rows and columns.

D D @ Build antichain with grid pin sequences.
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Two is too many

Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

Proof.

D D @ WLOG graph is a path connecting two
bad cells.

@ Permute rows and columns.

@ Flip rows and columns.

D @ Build antichain with grid pin sequences.
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

2l | |
Biid

@ WLOG graph is a path connecting two
bad cells.

@ Permute rows and columns.
@ Flip rows and columns.

@ Build antichain with grid pin sequences.
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

Proof.

B @ WLOG graph is a path connecting two
@ @ bad cells.

©

Permute rows and columns.

Flip rows and columns.

Build antichain with grid pin sequences.
Flip and permute back.

BED@
3
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

Proof.

B @ WLOG graph is a path connecting two
@ B bad cells.
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Permute rows and columns.
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Build antichain with grid pin sequences.
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

Proof.

B @ WLOG graph is a path connecting two
B @ bad cells.

©

Permute rows and columns.
Flip rows and columns.

Build antichain with grid pin sequences.

¢ ¢ ¢ ¢

e

Flip and permute back.
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

Proof.

©

WLOG graph is a path connecting two

(B B bad cells.
-]t

Permute rows and columns.
Flip rows and columns.

Build antichain with grid pin sequences.
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e

Flip and permute back.
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Theorem (B.)

A grid class whose graph has a component containing two or more
non-monotone-griddable cells is not pwo.

@ @ @ WLOG graph is a path connecting two
bad cells.
B B @ Permute rows and columns.
@] @ Flip rows and columns.
@ Build antichain with grid pin sequences.
B@ @ Flip and permute back.
@ @ Still have an antichain. -
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Just one non-monotone

@ What if a component contains exactly one non-monotone griddable
cell?

@ First: Add the (fairly strong) condition that the “bad” cell contains
only finitely many simple permutations.

@ Now can describe the class in a way which is amenable to Higman's
Theorem.

Sy
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Just one non-monotone

Theorem (B.)

Let M be a gridding matrix for which each component is a forest and
contains at most one non-monotone cell. If every non-monotone cell
contains only finitely many simple permutations, then Grid(M) is pwo.
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But sometimes one is too much...

@ One cell containing arbitrarily long increasing oscillations next to a
monotone cell is bad...

|
\
&
\
|
|
|
|
|
|
|
I
®

‘4.
rrT T T T T T T T T

@ Mind the gap: between finite simples and infinite oscillations, not
(yet) known.
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Outline

© Theory of antichains

Robert Brignall (OU) Permutation Antichains 8th February 2011 27 / 36



The way forward. . .

@ Grand aim: a structure theory for infinite antichains, to answer (or
explain why we can’t answer) questions about partial well-order.

@ In this talk: restrict attention to permutations, but this theory is really
for general combinatorial structures.
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Intuitive structure of antichains

@ Take an infinite sequence of points in the plane, p1, p, ..., each
following on “uniquely” from its predecessors.

@ Antichain elements: take a finite sequence p1, ..., pp of these points,
and blow up the first and last points.

@ Alternative to blowing up: tie the ends together.

Is this intuitive description of structure correct?
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Antichains can be more complicated, but we don’t care:

@ An infinite antichain A is fundamental if its closure,
CI(A) = {m: m < a for some a € A},

contains no infinite antichains other then subsets of A.
@ Fundamental really means no extraneous points.

@ Related concepts: minimal, maximal, canonical. ..

Proposition (Essentially due to Nash-Williams, 1963)

Every non-pwo permutation class contains a fundamental infinite antichain.

Bigger caveat: Maybe we just haven't found any ugly antichains yet.
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Grid pin sequences

@ Local separation: pj.1 separates p; from p;_1.

@ Local externality: pj;1 lies outside Rect(pj_1,pj), j=1,...,1.

@ Row-column agreement: p;1; must be placed in the same row or
column as p;.

@ Non-interaction: p;11 could not have been used as a pin earlier in the
sequence.
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To other structures

@ Grid pin sequences transfer to other combinatorial structures.

@ Translation resolves a conjecture in graph theory:

Conjecture (Ding, 1992)

The class of permutation graphs that do not contain (as an induced
subgraph) a path or the complement of a path on n > 5 vertices is wqo.

Counterexample

Permutations —  Permutation graphs
Increasing oscillations (no blow-up) —  Paths
Decreasing oscillations — Complement of paths

The “Widdershins” antichain (see next slide) lies in this class.
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Evidence of niceness

Theorem (Cherlin and Latka, 2000)

For each natural number k, there is a finite set A, of fundamental
antichains with the property that a class avoiding exactly k permutations is
pwo if and only if its intersection with each antichain in Ay is finite.

@ /\; consists of the increasing oscillating, Widdershins and V antichains
[Atkinson, Murphy and Ruskuc, 2002].

b

@ Ay is unknown. ..
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Colour your permutations

@ Permutations with n > 2 colours: no blow up required.

@ n-pwo: permutation class contains no n-coloured infinite antichains.

Example (2-Coloured Increasing Oscillating Antichain)

—e
°
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Colour your permutations

Conjecture (Pouzet, 1972)

A permutation class C is 2-pwo if and only if C is n-pwo for all n > 2.

(N.B. This is really a conjecture about graphs.)

Example (2-Coloured Increasing Oscillating Antichain)
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Questions and Summary

@ Conjectures describing the “niceness” of antichains are abundant.
Proofs are scarcer.

@ Permutations: what does antichain structure mean for permutation
class structure?

@ Could a better understanding of infinite fundamental antichains fill the
gap between existing antichain constructions and techniques for
proving pwo?
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Thanks!
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